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Abstract
Many dynamic term-structure models imply that the current yield curve is the sufficient statistic
to predict future bond yields and bond risk premia. This is the so-called Spanning Hypothesis. We
develop an out-of-sample forecasting exercise leveraging big data and methods from the Machine
Learning literature, coupled with a dynamic Nelson-Siegel model, and show that all predictability
steams from predictability of shorter rates. Violations of the Spanning Hypothesis are asymmetric
across the yield curve. We also show that not using macro data might cost 0.2-0.4 in terms of annual
Sharpe ratio for a mean-variance utility consumer.

Introduction

• Understanding the dynamics of the yield curve is key for portfolio choice, monetary policy conduction,
risk management and fiscal policy evaluation;

• Dynamic term structure models are useful for separating term premia from expectation of short rates;
• Common implication of these models: the Spanning Hypothesis

– Bond prices (or yields) should reflect the underlying state of the macroeconomy;
– Macroeconomic variables should not improve the forecast of bond yields and holding excess returns;

• Past literature focuses on in-sample inference exercises. Here: out-of-sample forecasting;

This Paper

1. Can macroeconomic variables help predict excess bond returns out-of-sample?

• Yes, but asymmetrically: macro data is only useful when trying to predict shorter rates (≈ 2 − 5
years). Longer rates (≈ 10 years) behave as theory predicts.

• This is true across many different forecasting methods.

2. Why does it happen?

• We deploy a dynamic Nelson-Siegel and provide a decomposition of excess bond returns into inno-
vations of these factors;

• All predictability comes from the short-run factor, which gets distributed along the yield curve;

3. Is this economically meaningful?

• A mean-variance consumer that uses macro data information to improve her forecasts and trade has
a non-trivial increase in realized Sharpe ratios (from 0.3 to 0.5-0.6);

• This improvement is available when trading bonds of shorter maturities, but is much smaller when
trading longer-maturity bonds;

Methodology and Empirical Results

Let y(n)t be the n-year zero-coupon yield at month t. The 1-year excess return on an n-year bond, realized
between t and t + 12, is given by:

xr
(n)
t+12 = n · y(n)t − (n− 1) · y(n−1)

t+12 − y
(1)
t

First exercise: predict xr(n)t+12 using a linear model where Ct are forward rates and PCt is a vector of
principals components from the FRED-MD dataset:

xr
(n)
t+12 = αn + θ′nCt + γ′nPCt + ϵt+12,n
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Figure 1: Ratio between out-of-sample mean-squared error without/with macro data. The spanning hypothesis implies that
bars should be around the red line - centered on 1. The out-of-sample period is 1990-2021. Different panels run the exercise
with different numbers of principal components extracted from the FRED-MD dataset.

A common statistical model for the yield curve is the Nelson-Siegel one:

y
(τ )
t = β1,t + β2,t

(
1− e−λτ

λτ

)
+ β3,t

(
1− e−λτ

λτ
− e−λτ

)

We fit the model by OLS, month by month. The time-varying betas have interpretations:

• β1,t = lim
τ→∞

y
(τ )
t =⇒ long-run factor;

• β2,t = −
(

lim
τ→∞

y
(τ )
t − lim

τ→0
y
(τ )
t

)
=⇒ short-run factor, since it moves short rates disproportionately

more;

• β3,t =⇒ medium-run factor since its coefficients starts at 0, converges to zero as τ diverges but it has
a hump;

Proposition 1. Suppose the yield curve follows a Nelson-Siegel representation and assume that the decay param-
eter is a positive constant λt = λ > 0. Define θ ≡ 12λ. Then, the one-year excess bond return for a maturity of n
years is given by

xr
(n)
t+12 = (n− 1)

[
β1,t − β1,t+12

]
+

(
1− e−θ(n−1)

θ

)[
e−θβ2,t − β2,t+12

]
+

(
1− e−θ(n−1)

θ
− ne−θ(n−1) + 1

)[
e−θβ3,t − β3,t+12

]
+ β3,t+12

(
1− e−θ(n−1)

)
• Terms in brackets depend on t but not on the maturity. These are innovations in factors;
• Terms in parentheses only depend on maturity;

Now forecast the factors (or their innovations) with different methods, with and without a large panel
of macroeconomic data Xt in addition to the forward rates Ct:

βi,t+12 = g(Ct, Xt) + ui,t+12

Methods: 1) PCA + Linear regression; 2) Regularized linear models; 3) Random Forest;
Forecasting performance is measured by the out-of-sample R2 against a random walk:

R2
i,OOS = 1−

(∑
t

(
βi,t+12 − β̂i,t+12

)2)
/

(∑
t

(
βi,t+12 − βi,t

)2)

Number of Macro PCs p-values

Target No Macro 1 2 3 4 5 1 2 3 4 5

β1 -0.21 -0.17 -0.19 -0.15 -0.11 -0.09 0.18 0.33 0.13 0.11 0.10
β2 -0.08 -0.08 0.17 0.22 0.21 0.23 0.49 0.01 0.02 0.02 0.02
β3 -0.12 -0.15 -0.06 -0.07 -0.07 -0.07 0.92 0.07 0.19 0.20 0.21

∆β1 -0.19 -0.15 -0.17 -0.14 -0.10 -0.08 0.19 0.32 0.17 0.12 0.10
∆β2 -0.11 -0.12 0.14 0.18 0.17 0.19 0.52 0.00 0.02 0.02 0.02
∆β3 -0.10 -0.12 -0.06 -0.05 -0.05 -0.06 0.93 0.17 0.25 0.26 0.31

Table 1: R2
OOS with and without macro data achieved by a linear regression that control for forward rates and different num-

bers of principal components of the macro data. The p-values refer to a one-sided test in which, under the null, macro data
should not be helpful..

No Macro Data All Macro Data p-value

Target Ridge Lasso ENet RF Ridge Lasso ENet RF Ridge Lasso ENet RF

∆β1 0.12 0.12 0.09 -0.53 0.01 0.12 0.12 -0.05 0.96 0.50 0.27 0.00
∆β2 0.01 -0.02 -0.01 -0.42 0.15 0.22 0.19 0.32 0.02 0.00 0.00 0.00
∆β3 0.04 -0.02 -0.03 -0.34 -0.13 -0.09 -0.08 -0.26 1.00 0.95 0.95 0.23

Table 2: R2
OOS with and without macro data achieved by regularized linear methods and the Random Forest. The p-values

refer to a one-sided test in which, under the null, macro data should not be helpful..

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e 

Fe
at

ur
e 

Im
po

rta
nc

e

1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e 

Fe
at

ur
e 

Im
po

rta
nc

e

2

AA
A

AA
AF

FM
AM

DM
NO

x
AM

DM
UO

x
AN

DE
NO

x
AW

HM
AN

AW
OT

M
AN BA

A
BA

AF
FM

BO
GM

BA
SE

BU
SI

NV
x

BU
SL

OA
NS

CE
16

OV
CE

S0
60

00
00

00
7

CE
S0

60
00

00
00

8
CE

S1
02

10
00

00
1

CE
S2

00
00

00
00

8
CE

S3
00

00
00

00
8

CL
AI

M
Sx

CL
F1

6O
V

CM
RM

TS
PL

x
CO

M
PA

PF
Fx

CO
NS

PI
CP

3M
x

CP
IA

PP
SL

CP
IA

UC
SL

CP
IM

ED
SL

CP
IT

RN
SL

CP
IU

LF
SL

CU
M

FN
S

CU
SR

00
00

SA
0L

2
CU

SR
00

00
SA

0L
5

CU
SR

00
00

SA
C

CU
SR

00
00

SA
D

CU
SR

00
00

SA
S

DD
UR

RG
3M

08
6S

BE
A

DM
AN

EM
P

DN
DG

RG
3M

08
6S

BE
A

DP
CE

RA
3M

08
6S

BE
A

DS
ER

RG
3M

08
6S

BE
A

DT
CO

LN
VH

FN
M

DT
CT

HF
NM

EX
CA

US
x

EX
JP

US
x

EX
SZ

US
x

EX
US

UK
x

FE
DF

UN
DS GS

1
GS

10 GS
5

HO
US

T
HO

US
TM

W
HO

US
TN

E
HO

US
TS

HO
US

TW HW
I

HW
IU

RA
TI

O
IN

DP
RO

IN
VE

ST
IP

BU
SE

Q
IP

CO
NG

D
IP

DC
ON

GD
IP

DM
AT

IP
FI

NA
L

IP
FP

NS
S

IP
FU

EL
S

IP
M

AN
SI

CS
IP

M
AT

IP
NC

ON
GD

IP
NM

AT
IS

RA
TI

Ox
M

1S
L

M
2R

EA
L

M
2S

L
M

AN
EM

P
ND

M
AN

EM
P

NO
NB

OR
RE

S
NO

NR
EV

SL
OI

LP
RI

CE
x

PA
YE

M
S

PC
EP

I
PE

RM
IT

PE
RM

IT
M

W
PE

RM
IT

NE
PE

RM
IT

S
PE

RM
IT

W
PP

IC
M

M
RE

AL
LN

RE
TA

IL
x

RP
I

S&
P 

50
0

S&
P 

PE
 ra

tio
S&

P 
di

v 
yi

el
d

S&
P:

 in
du

st
SR

VP
RD

T1
0Y

FF
M

T1
YF

FM
T5

YF
FM

TB
3M

S
TB

3S
M

FF
M

TB
6M

S
TB

6S
M

FF
M

TO
TR

ES
NS

TW
EX

AF
EG

SM
TH

x
UE

M
P1

5O
V

UE
M

P1
5T

26
UE

M
P2

7O
V

UE
M

P5
TO

14
UE

M
PL

T5
UE

M
PM

EA
N

UM
CS

EN
Tx

UN
RA

TE
US

CO
NS

US
FI

RE
US

GO
OD

US
GO

VT
US

TP
U

US
TR

AD
E

US
W

TR
AD

E
VI

XC
LS

x
W

87
5R

X1
W

PS
FD

49
20

7
W

PS
FD

49
50

2
W

PS
ID

61
W

PS
ID

62 y1 f2 f3 f4 f5 f6 f7 f8 f9 f1
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e 

Fe
at

ur
e 

Im
po

rta
nc

e

3

Figure 2: Feature importance computed by the Random Forest methodology. The bars represent how much splits on each
variable contributed to the overall decrease in in-sample MSE reduction. Red bars are forward rates while blue bars are vari-
ables from macro data. From top to bottom, β1, β2, and β3.
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Figure 3: The red dots represent the Sharpe ratio improvement that a mean-variance consumer would enjoy were she to use
macro data when predicting bond risk premia. Different panels allow for different numbers of PCs from macro data. The
gains are decreasing on the maturity. Grey segments are 95% confidence intervals. We assume that no short-sales are possi-
ble, but the qualitative result also holds under short-selling constraints.


