Asymmetric Violations of the Spanning Hypothesis

Raul Riva 1 (joint with Gustavo Freire2)

> ¹Northwestern University ²Erasmus University

SoFiE 2024 - PUC-Rio

June 14th, 2024

Intro

- *•* Yield curve dynamics is of major interest:
	- \triangleright Monetary policy transmission $+$ Fiscal policy assessment;
	- ▶ Risk management and long-term investment decisions;
	- \blacktriangleright Risk premia measurement and portfolio allocation;
- *•* Arbitrage-free Affine Term Structure models: our workhorse, many good properties but generate sharp predictions;

Intro

- *•* Yield curve dynamics is of major interest:
	- \triangleright Monetary policy transmission $+$ Fiscal policy assessment;
	- ▶ Risk management and long-term investment decisions;
	- \blacktriangleright Risk premia measurement and portfolio allocation;
- *•* Arbitrage-free Affine Term Structure models: our workhorse, many good properties but generate sharp predictions;
- *•* Common *implication* of many term structure models: the "Spanning Hypothesis":
	- ▶ The yield curve spans all information necessary to forecast future yields and bond returns;
	- ► Information about different sources of macroeconomic risks should be embedded in bond prices (and yields);
	- ▶ Arises from many full-information models [\(Wachter](#page-61-0) (2006), [Dewachter](#page-60-0) and Lyrio (2006), Piazzesi and [Schneider](#page-61-1) (2007), [Rudebusch](#page-61-2) and Wu (2008), [Rudebusch](#page-61-3) and Swanson (2012), Duffee [\(2013\)](#page-60-1), ...);

This paper

Do macroeconomic variables help forecasting excess bond returns and/or future yields *after* we condition on the current yield curve?

- *•* Literature often offers a binary answer:
	- \triangleright Yes: Cooper and [Priestley](#page-60-2) (2009), [Ludvigson](#page-61-4) and Ng (2009), Joslin et al. [\(2014](#page-61-5)), [Greenwood](#page-60-3) and Vayanos (2014), [Cieslak](#page-60-4) and Povala (2015), Fernandes and Vieira (2019);
	- ▶ Probably Not: Duffee [\(2013](#page-60-1)), Bauer and [Hamilton](#page-60-5) (2018);
	- Econometric inference here is challenging: small sample $+$ persistent regressors;

This paper

Do macroeconomic variables help forecasting excess bond returns and/or future yields *after* we condition on the current yield curve?

- *•* Literature often offers a binary answer:
	- \triangleright Yes: Cooper and [Priestley](#page-60-2) (2009), [Ludvigson](#page-61-4) and Ng (2009), Joslin et al. [\(2014](#page-61-5)), [Greenwood](#page-60-3) and Vayanos (2014), [Cieslak](#page-60-4) and Povala (2015), Fernandes and Vieira (2019);
	- ▶ Probably Not: Duffee [\(2013](#page-60-1)), Bauer and [Hamilton](#page-60-5) (2018);
	- Econometric inference here is challenging: small sample $+$ persistent regressors;
- *•* We show evidence that the answer is more nuanced: *asymmetric* violations;
- *•* Stronger violations at the shorter end of the yield curve;
- No evidence of violations at the longer end of the yield curve;
- *•* Violations are economically meaningful for a mean-variance investor;
- *•* Stronger violations when inflation is higher, when the policy maker is more likely to act;

How do we do this in 25 minutes?

- **1** Design an out-of-sample forecasting exercise for excess bond returns:
	- ▶ We use a large panel of macroeconomic variables instead of selecting a few variables
	- ▶ Out-of-sample period: 1990-2021
- 2 Propose a decomposition of excess bond returns based on Nelson-Siegel factors:
	- \blacktriangleright Reduced-form model for the yield curve with great fit;
	- \triangleright Predictability of factors gets distributed along the yield curve through a single factor;
	- \triangleright Study factor predictability using different machine learning methods;
	- \blacktriangleright All the action comes from the predictability of a single factor;

How do we do this in 25 minutes?

- **1** Design an out-of-sample forecasting exercise for excess bond returns:
	- ▶ We use a large panel of macroeconomic variables instead of selecting a few variables
	- ▶ Out-of-sample period: 1990-2021
- 2 Propose a decomposition of excess bond returns based on Nelson-Siegel factors:
	- \blacktriangleright Reduced-form model for the yield curve with great fit;
	- \triangleright Predictability of factors gets distributed along the yield curve through a single factor;
	- \triangleright Study factor predictability using different machine learning methods;
	- \blacktriangleright All the action comes from the predictability of a single factor;
- 3 Why should anyone care? Because it's money on the table (\$\$\$)!
	- Significant Sharpe ratio improvements in a mean-variance allocation strategy ($\approx 0.2 \rightarrow 0.4$);
	- ► But larger when trading shorter maturity bonds (\approx 2 years);
- 4 Are the gains of using more complicated models equally present over time? No!
	- ▶ Gains are concentrated on periods of higher inflation;

Literature

- *•* Bond returns forecasting and tests of the Spanning Hypothesis
	- ▶ Cooper and [Priestley](#page-60-2) (2009), [L](#page-60-3)[udvigson](#page-61-4) and Ng (2009), Joslin et al. [\(2014](#page-61-5)), Greenwood and Vayanos (2014), [Cieslak](#page-60-4) and Povala (2015), Bauer and [Hamilton](#page-60-5) (2018), Bianchi et al. (2021), [Hoogteijling](#page-60-7) et al. (2021), van der Wel and [Zhang](#page-61-6) (2021), [Borup](#page-60-8) et al. (2023)
- *•* Nelson-Siegel modeling
	- ▶ [Nelson](#page-61-7) and Siegel (1987), [Diebold](#page-60-10) and Li (2006), Diebold et al. (2006), Diebold and Rudebusch (2013), van Dijk et al. [\(2013](#page-61-8)), HÃď[nnikÃ](#page-61-9)ďinen (2017), Fernandes and Vieira (2019)
- *•* Economic value of predictability
	- ▶ [Thornton](#page-61-10) and Valente (2012), Sarno et al. [\(2016\)](#page-61-11), [G](#page-60-6)[argano](#page-60-12) et al. (2019), Bianchi et al. (2021)
- *•* Our contribution: out-of-sample tests of the spanning hypothesis using a novel decomposition of excess bond returns that makes the asymmetry easy to identify

Data

Yield curve data:

- *•* Taken from Liu and Wu [\(2021\)](#page-61-12). We focus on the 1973-2021 period.
- Constructed from CRSP data we have nothing to say about non-US data (yet!)
- *•* Provides longer maturities than Fama and Bliss [\(1987\)](#page-60-13)
- *•* Lower fitting errors than [Gurkaynak](#page-60-14) et al. (2007)

Macroeconomic data:

- *•* FRED-MD data set, detailed in [McCracken](#page-61-13) and Ng (2016), maintained by St. Louis Fed
- Monthly frequency, a total of 126 variables covering different groups of variables
- Price indexes, output and unemployment measures, real estate market indicators, exchange rates, monetary aggregates, inventories and investment measures, credit spreads...

Forecasting Excess Bond Returns

- Let $y_t^{(n)}$ be the *n*-year zero-coupon rate at month *t*;
- *•* The 1-year excess bond returns for a maturity of *n* years are given by:

$$
xr_{t+12}(n) \equiv n \cdot y_t^{(n)} - (n-1) \cdot y_{t+12}^{(n-1)} - y_t^{(1)}
$$
 (1)

Forecasting Excess Bond Returns

- Let $y_t^{(n)}$ be the *n*-year zero-coupon rate at month *t*;
- *•* The 1-year excess bond returns for a maturity of *n* years are given by:

$$
xr_{t+12}(n) \equiv n \cdot y_t^{(n)} - (n-1) \cdot y_{t+12}^{(n-1)} - y_t^{(1)}
$$
 (1)

• We estimate a linear model with an expanding sample forecasting design:

$$
xr_{t+12}(n) = \alpha_n + \theta'_n C_t + \gamma'_n PC_t + \epsilon_{t+12,n}
$$
\n⁽²⁾

- *•* C_t controls for the yield curve using forward rates $f_t(n) = n \cdot y_t^{(n)} (n-1) \cdot y_t^{(n-1)}$;
- *• PC^t* are principal components extracted from the FRED-MD data set;
- Spanning hypothesis: allowing for $\gamma_n \neq 0$ should not improve the forecast of $xr_{t+12}(n)$;
- Previous literature focuses on testing $\gamma_n = 0$. We focus directly on \hat{x} _{t+12}(*n*);

MSE Ratios With and Without Macro Data (> [Controlling](#page-40-0) by 3 YC PCs) (> p[-values](#page-41-0)) (> [In-sample](#page-42-0)

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 8 / 23

Modeling Yields

- *•* Macroeconomic variables improved forecasting for shorter maturities;
- We need a device to more thoroughly assess this asymmetry in the violation of the SH;
- Forecasting returns amounts to forecasting $y_{t+12}^{(n)}$;

Modeling Yields

- *•* Macroeconomic variables improved forecasting for shorter maturities;
- We need a device to more thoroughly assess this asymmetry in the violation of the SH;
- Forecasting returns amounts to forecasting $y_{t+12}^{(n)}$;

We assume a dynamic Nelson-Siegel model for yields as in [Diebold](#page-60-9) and Li (2006):

$$
y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)
$$
(3)

- β_1 is a long-run factor: $\lim_{\tau \to \infty} y_t^{(\tau)} = \beta_{1,t}$;
- β_2 is a short-run factor: its absolute loading decreases with τ (measured in months).
- β_3 is a medium-run factor: its loading is hump-shaped.
- We set $\lambda = 0.0609$ and estimate the model by OLS date by date with $1 \leq \tau \leq 120$.

Decomposing Returns

Proposition 1

Suppose the yield curve follows the Nelson-Siegel representation and assume that the decay parameter is a *positive constant* $\lambda_t = \lambda > 0$ *. Define* $\theta \equiv 12\lambda$ *. Then, the one-year excess bond return for a maturity of n years is given by*

$$
xr_{t+12}(n) = (n-1)\left[\beta_{1,t} - \beta_{1,t+12}\right] + \left(\frac{1 - e^{-\theta(n-1)}}{\theta}\right)\left[e^{-\theta}\beta_{2,t} - \beta_{2,t+12}\right] + \left(\frac{1 - e^{-\theta(n-1)}}{\theta} - ne^{-\theta(n-1)} + 1\right)\left[e^{-\theta}\beta_{3,t} - \beta_{3,t+12}\right] + \left(1 - e^{-\theta(n-1)}\right)\beta_{3,t+12}
$$
\n(4)

• Terms in parentheses are not time-varying and brackets do not depend on the maturity

Factor Realizations (1973-2021)

Forecasting Nelson-Siegel Factors

- *•* OLS factor estimation implies that β's are linear combinations of yields;
- Under the spanning hypothesis: macro data should not be helpful to forecast factors

$$
\beta_{i,t+12} = \alpha_i + \theta'_i C_t + \gamma'_i PC_t + \epsilon_{i,t+12}, \quad i \in \{1, 2, 3\}
$$
 (5)

Forecasting Nelson-Siegel Factors

- *•* OLS factor estimation implies that β's are linear combinations of yields;
- Under the spanning hypothesis: macro data should not be helpful to forecast factors

$$
\beta_{i,t+12} = \alpha_i + \theta'_i C_t + \gamma'_i PC_t + \epsilon_{i,t+12}, \quad i \in \{1, 2, 3\}
$$
 (5)

• We use the out-of-sample R^2 to measure the forecasting ability:

$$
R_{oos}^{2} = 1 - \frac{\sum_{t=t_0}^{T} (\beta_{i,t} - \widehat{\beta}_{i,t})^{2}}{\sum_{t=t_0}^{T} (\beta_{i,t} - \overline{\beta}_{i,t})^{2}}
$$
(6)

- $\overline{\beta}_{i}$ *t* is a benchmark model: for example a random walk;
- *•* OOS period: 1990-2021, with a recursive forecasting approach (384 total forecasts);
- We use a Diebold-Mariano test to make inference about any forecasting improvement;

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 12 / 23

			Number of Macro PCs				p-values				
	Target No Macro 1 2 3					4 5	$\mathbf{1}$	$\overline{2}$	3	4	-5
β_1	-0.21				-0.17 -0.19 -0.15 -0.11 -0.09 0.18 0.33 0.13					0.11 0.10	
β	-0.08	-0.08	0.17		0.22 0.21 0.23 0.49			0.01	0.02	0.02	0.02
β_3	-0.12		-0.15 -0.06	-0.07	-0.07	-0.07	0.92	0.07	0.19	0.20	0.21

Table: *R*² out-of-sample against a random walk and Diebold-Mariano p-values

- **•** Improving over a random walk is hard, but possible for (and *only* for) $β_2$
- *•* Result holds if we allow for even more PCs, but we lose statistical power

Regularization Methods - Notation

- *•* PCA is not "supervised": dimensionality reduction decoupled from prediction
- *•* Regularization works by penalizing a model for using too many variables
- *•* Statistical trade-off: model "size" vs model flexibility

Regularization Methods - Notation

- *•* PCA is not "supervised": dimensionality reduction decoupled from prediction
- *•* Regularization works by penalizing a model for using too many variables
- *•* Statistical trade-off: model "size" vs model flexibility

Let $\psi_1, \psi_2 \ge 0$ be scalars and let $||.||_p$ be the L^p norm. Consider the minimization:

$$
\min_{\alpha_i, \gamma_i} \left\{ \frac{1}{\mathcal{T} - 12 - t_0} \sum_{t = t_0}^{\mathcal{T} - 12} \left(\beta_{i, t+12} - \alpha_i - \gamma_i' X_t \right)^2 + \underbrace{\psi_1 \cdot ||\gamma_i||_1 + \psi_2 \cdot ||\gamma_i||_2}_{\text{model complexity penalty}} \right\} \tag{7}
$$

Regularization Methods - Notation

- *•* PCA is not "supervised": dimensionality reduction decoupled from prediction
- *•* Regularization works by penalizing a model for using too many variables
- *•* Statistical trade-off: model "size" vs model flexibility

Let $\psi_1, \psi_2 \ge 0$ be scalars and let $||.||_p$ be the L^p norm. Consider the minimization:

$$
\min_{\alpha_i, \gamma_i} \left\{ \frac{1}{\mathcal{T} - 12 - t_0} \sum_{t=t_0}^{\mathcal{T} - 12} \left(\beta_{i, t+12} - \alpha_i - \gamma_i' X_t \right)^2 + \underbrace{\psi_1 \cdot ||\gamma_i||_1 + \psi_2 \cdot ||\gamma_i||_2}_{\text{model complexity penalty}} \right\} \tag{7}
$$
\n
$$
\widehat{\beta}_{i, t+12} = \widehat{\alpha}_i + \widehat{\gamma}_i' X_t \tag{8}
$$

- 2 $\psi_1 > 0, \psi_2 = 0 \implies$ Lasso
- 3 $\psi_1, \psi_2 > 0 \implies$ Elastic Net

• We estimate ψ_1, ψ_2 using a 80-20 split validation set for each date *t* using grid search.

Regularization Methods - Performance

Target	No Macro Data				All Macro Data		p-value			
	Ridge	Lasso	Elastic Net	Ridge	Lasso	Elastic Net	Ridge	Lasso	Elastic Net	
β_1	-4.84	-4.82	-4.69	-4.06	-4.30	-4.18	0.00	0.00	0.00	
β_2	-0.08	-0.13	-0.19	0.07	0.07	0.06	0.05	0.00	0.01	
β_3	-0.41	-0.59	-0.59	-0.47	-0.46	-0.45	0.78	0.04	0.03	
$\Delta \beta_1$	0.12	0.12	0.09	0.01	0.12	0.12	0.96	0.50	0.27	
$\Delta \beta_2$	0.01	-0.02	-0.01	0.15	0.22	0.19	0.02	0.00	0.00	
$\Delta\beta_3$	0.04	-0.02	-0.03	-0.13	-0.09	-0.08	1.00	0.95	0.95	

Table: *R*² out-of-sample of regularized linear models

• We target both factors and their innovations due to time-series persistence

 \rightarrow Other [Controls](#page-49-0) $\left\{\rightarrow$ [Stationarity](#page-50-0) Matters $\left\{\rightarrow$ Chosen [variables](#page-51-0)

- *•* This is the best method so far with *R*² *>* 30% for the first time
- Main result is not due to linear forecasting methods
- *•* Forecasting innovations is usually better than forecasting factors directly

Average Feature Importance (Macro Variables vs Yield Curve)

Does it matter that much?

- Do these asymmetric violations matter in practice?
- *•* If there is additional predictability in bond returns, traders should take advantage of that!
- We study the problem of a investor similar to Thornton and Valente (2012);
	- ▶ One-year fixed investment horizon;
	- \blacktriangleright Monthly trading decisions;
	- \blacktriangleright Mean-variance utility function;
	- ▶ At time *t*, she can either invest in the risk-free 1-year bond rate or in a risky *n*-year bond;

Does it matter that much?

- *•* Do these asymmetric violations matter in practice?
- *•* If there is additional predictability in bond returns, traders should take advantage of that!
- We study the problem of a investor similar to Thornton and Valente (2012);
	- ▶ One-year fixed investment horizon;
	- \blacktriangleright Monthly trading decisions;
	- \blacktriangleright Mean-variance utility function;
	- ▶ At time *t*, she can either invest in the risk-free 1-year bond rate or in a risky *n*-year bond;
- $R_{p,t+12}$ is the gross return of her portfolio: $R_{p,t+12} = 1 + y_t^{(1)} + w_t' \times r_{t+12}$;

$$
\max_{\boldsymbol{w}_t} \left\{ \mathbb{E}_t\left[R_{\rho,t+12}(\boldsymbol{w}_t) \right] - \frac{\gamma}{2} \cdot \mathrm{Var}_t\left[R_{\rho,t+12}(\boldsymbol{w}_t) \right] \right\}
$$

•
$$
\mu_{t+12|t} \equiv \mathbb{E}_t [xr_{t+12}]
$$
 and $\Sigma_{t+12|t} \equiv \mathbb{E}_t [(xr_{t+12} - \mu_{t+12|t}) (xr_{t+12} - \mu_{t+12|t})']$;

How to form expectations?

- Optimal solution: $w_t^* = \frac{1}{\gamma} \cdot \sum_{t+12|t}^{-1} \mu_{t+12|t}$, and we let $\gamma = 3$;
- Our methodology delivers estimates of $\mu_{t+12|t}$ with and without macro data;

How to form expectations?

- Optimal solution: $w_t^* = \frac{1}{\gamma} \cdot \sum_{t+12|t}^{-1} \mu_{t+12|t}$, and we let $\gamma = 3$;
- Our methodology delivers estimates of $\mu_{t+12|t}$ with and without macro data;
- We follow [Thornton](#page-61-10) and Valente (2012) to allow for time-varying volatility:

$$
\widehat{\Sigma}_{t+12|t} \equiv \sum_{i=0}^{\infty} \epsilon_{t-i} \epsilon'_{t-i} \odot \Omega_{t-i}, \quad \Omega_{t-i} \equiv \alpha \cdot e^{-\alpha \cdot i} \mathbf{1} \mathbf{1}'
$$

where ϵ_t is the 12-month ahead forecasting error;

• As time goes by, the past is exponentially less important. We set $\alpha = 0.05$;

How to form expectations?

- Optimal solution: $w_t^* = \frac{1}{\gamma} \cdot \sum_{t+12|t}^{-1} \mu_{t+12|t}$, and we let $\gamma = 3$;
- Our methodology delivers estimates of $\mu_{t+12|t}$ with and without macro data;
- We follow [Thornton](#page-61-10) and Valente (2012) to allow for time-varying volatility:

$$
\widehat{\Sigma}_{t+12|t} \equiv \sum_{i=0}^{\infty} \epsilon_{t-i} \epsilon'_{t-i} \odot \Omega_{t-i}, \quad \Omega_{t-i} \equiv \alpha \cdot e^{-\alpha \cdot i} \mathbf{11}'
$$

where ϵ_t is the 12-month ahead forecasting error;

- As time goes by, the past is exponentially less important. We set $\alpha = 0.05$;
- *•* Leverage? Two flavors: [−]¹ [≤] *^w*(*n*) *^t* [≤] ² (unconstrained) or ⁰ [≤] *^w*(*n*) *^t* ≤ 1 (constrained);
- Our metric: Sharpe ratio = average risk premium over its volatility (1990-2021);
- *•* Focus on the Sharpe ratio *improvement* from using macro data across maturities;

Baseline Sharpe Ratio ≈ 0.2 (Constrained Case) Dunconstrained Case

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 20 / 23

- *•* When is it more valuable to use a more complicated model?
- *•* Conditional predictive ability test from [Giacomini](#page-60-15) and White (2006);

- *•* When is it more valuable to use a more complicated model?
- *•* Conditional predictive ability test from [Giacomini](#page-60-15) and White (2006);
- \bullet Define the loss function $L_{i,t}\equiv\left(\beta_{i,t}-\widehat{\beta}_{i,t}\right)^2$ and the difference $D_{i,t}\equiv L^{(\mathsf{SH})}_{i,t}-L^{(\mathsf{Macro})}_{i,t};$
- If $D_{i,t} > 0$, baseline loss was higher \implies macro data was useful;
- Focus on forecasts using Random Forrests (best overall model) + rolling windows;

- *•* When is it more valuable to use a more complicated model?
- *•* Conditional predictive ability test from [Giacomini](#page-60-15) and White (2006);
- \bullet Define the loss function $L_{i,t}\equiv\left(\beta_{i,t}-\widehat{\beta}_{i,t}\right)^2$ and the difference $D_{i,t}\equiv L^{(\mathsf{SH})}_{i,t}-L^{(\mathsf{Macro})}_{i,t};$
- If $D_{i,t} > 0$, baseline loss was higher \implies macro data was useful;
- Focus on forecasts using Random Forrests (best overall model) + rolling windows;
- We are interested in testing H_0 : $\mathbb{E}[D_{i,t+12}|\mathcal{G}_t] = 0$; \mathcal{G}_t is chosen by the econometrician;
- We study different state variables x_t and take G_t as the natural filtration of x_t ;

- *•* When is it more valuable to use a more complicated model?
- *•* Conditional predictive ability test from [Giacomini](#page-60-15) and White (2006);
- \bullet Define the loss function $L_{i,t}\equiv\left(\beta_{i,t}-\widehat{\beta}_{i,t}\right)^2$ and the difference $D_{i,t}\equiv L^{(\mathsf{SH})}_{i,t}-L^{(\mathsf{Macro})}_{i,t};$
- If $D_{i,t} > 0$, baseline loss was higher \implies macro data was useful;
- Focus on forecasts using Random Forrests (best overall model) + rolling windows;
- We are interested in testing H_0 : $\mathbb{E}[D_{i,t+12}|\mathcal{G}_t] = 0$; \mathcal{G}_t is chosen by the econometrician;
- We study different state variables x_t and take G_t as the natural filtration of x_t ;
- We also study the associated regression:

$$
D_{2,t+12} = a + b' \mathbf{x}_t + u_{t+12}
$$

Math [Details](#page-57-0) \blacksquare \rightarrow [Time-Series](#page-55-0) for D_i \rightarrow \blacksquare \rightarrow [Trivial](#page-56-0)

Conditional Predictive Ability

 $D_{2,t+12} = a + b'x_t + u_{t+12}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
EPU	-0.08					-0.11				$-0.19*$
	(0.10)					(0.10)				(0.10)
CFNAI		-0.06				-0.10		-0.09		-0.14
		(0.08)				(0.07)		(0.09)		(0.08)
UGAP			-0.02				0.04	0.01	-0.03	0.05
			(0.10)				(0.09)	(0.09)	(0.08)	(0.13)
PCE				$0.30**$			$0.31**$	$0.31**$	$0.30**$	$0.33***$
				(0.12)			(0.12)	(0.12)	(0.12)	(0.11)
Slope					0.09				0.12	0.10
					(0.12)				(0.11)	(0.12)
N	384	384	384	384	384	384	384	384	384	384
R ₂	0.01	0.00	0.00	0.09	0.01	0.02	0.09	0.10	0.10	0.13
GW p-values	0.51	0.38	0.84	0.00	0.45	0.50	0.00	0.00	0.01	0.01

▶ [Conditioning](#page-58-0) Variables ▶ [Non-Parametric](#page-59-0) Evidence

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 22 / 23

Wrap-Up

Main takeaways:

- The shorter end of the American nominal yield curve violates the Spanning Hypothesis;
- *•* The longer end behaves very much as many affine DTSMs predict!
- *•* This extra predictability can create a Sharpe ratio improvement of ≈ 0*.*1 − 0*.*2;
- *•* Using a more complicated model pays off when one faces higher inflation rates;

Wrap-Up

Main takeaways:

- The shorter end of the American nominal yield curve violates the Spanning Hypothesis;
- *•* The longer end behaves very much as many affine DTSMs predict!
- *•* This extra predictability can create a Sharpe ratio improvement of ≈ 0*.*1 − 0*.*2;
- *•* Using a more complicated model pays off when one faces higher inflation rates;

And now so what?

- *•* Shorter and longer rates should probably be modeled within different frameworks;
- *•* Why do we think this asymmetry is happening? Our conjecture:
	- ▶ Shorter end is more heavily influenced by monetary policy... and fund managers know that!
	- \triangleright Macro data may help market participants to anticipate monetary policy decisions;
- Models with spanning assume that the central bank's reaction function is known!
	- ► How would a DTSM with an unknown reaction function look like? Future work!

Wrap-Up

Main takeaways:

- The shorter end of the American nominal yield curve violates the Spanning Hypothesis;
- *•* The longer end behaves very much as many affine DTSMs predict!
- *•* This extra predictability can create a Sharpe ratio improvement of ≈ 0*.*1 − 0*.*2;
- *•* Using a more complicated model pays off when one faces higher inflation rates;

And now so what?

- *•* Shorter and longer rates should probably be modeled within different frameworks;
- *•* Why do we think this asymmetry is happening? Our conjecture:
	- \triangleright Shorter end is more heavily influenced by monetary policy... and fund managers know that!
	- \triangleright Macro data may help market participants to anticipate monetary policy decisions;
- Models with spanning assume that the central bank's reaction function is known!
	- ► How would a DTSM with an unknown reaction function look like? Future work!

Thank you! (By the way, I'll be on the job market this year!)

[Appendix](#page-39-0) (Thank you!)

Excess Bond Returns Relative MSE Ratios

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 2/23

In-Sample Evidence Forecasting Returns

\triangle lternative Estimation Procedures

- *•* NLS stands for Non-Linear Least Squares Date by Date
- *•* Optimal OLS is the in-sample best OLS-implied decay fit

Alternative Estimation Procedures

A quadratic polynomial model:

$$
y_t^{(\tau)} = c_{1,t} + c_{2,t} \cdot \tau + c_{3,t} \cdot \tau^2
$$
 (9)

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 6 / 23

Is this a reasonable model for the US Nominal Yield Curve?

- Blue: $rx_t(n)$ observed from data for $n = 2$ and $n = 10$
- *•* Red: *rxt*(*n*) that would have been implied by our estimates of the factors
- *•* A Nelson-Siegel model fits well the American nominal yield curve
- The Fed actually uses a variant of the NS model to report their yield [curve](https://www.federalreserve.gov/data/nominal-yield-curve.htm)
^{Raul Riva (Northwestern University) Asymmetric Violations of the Spanning Hypothesis} [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 7 / 23

$Estimation$ Details \bullet

Define the following matrices for each time *t*:

$$
X \equiv \begin{bmatrix} 1 & \left(\frac{1 - e^{-\lambda \tau_1}}{\lambda \tau_1}\right) & \left(\frac{1 - e^{-\lambda \tau_1}}{\lambda \tau_1} - e^{-\lambda \tau_1}\right) \\ \vdots & \vdots & \vdots \\ 1 & \left(\frac{1 - e^{-\lambda \tau_N}}{\lambda \tau_N}\right) & \left(\frac{1 - e^{-\lambda \tau_N}}{\lambda \tau_N} - e^{-\lambda \tau_N}\right) \end{bmatrix}, \quad Y_t = \begin{bmatrix} y_t^{(\tau_1)} \\ \vdots \\ y_t^{(\tau_N)} \end{bmatrix}
$$
(10)

Now estimate betas using OLS:

$$
\begin{bmatrix} \beta_{1,t} \\ \beta_{2,t} \\ \beta_{3,t} \end{bmatrix} = (X'X)^{-1} X' Y_t
$$
 (11)

Notice that *X* does not depend on *t*.

 $Fitting the Decay$

• For each λ, fit the model by OLS over the entire sample and compute the average squared

Regularization Failure for β_1 [Back](#page-22-0)

Model Selection - Lasso

How frequently are variables from each group chosen?

[Elastic](#page-52-0) Net \bigwedge [Back](#page-22-0)

- *•* Typical number of chosen variables is around 10-15
- Price measures are the leading predictor for β_1 echoes Joslin et al (2014)
- Short and medium run: the "illusion of sparsity" Giannone et al (2021)

 $Model$ Selection - Flastic Net \bullet [Back](#page-51-0)

Feature Importance

Unconstrained Sharpe Ratio Improvement

Raul Riva (Northwestern University) [Asymmetric](#page-0-0) Violations of the Spanning Hypothesis June 14th, 2024 16 / 23

Time series of scaled *Dⁱ,^t*

 \triangleright [Back](#page-32-0)

Random Forrest with Rolling Window (180 months)

Math Details - Giacomini and White (2006)

- • Let x_t be a $q \times 1$ random vector with variables chosen by the econometrician
- Let $z_{t+h} \equiv x_t \left(L_{t+h}^{m'} L_{t+h}^m \right)$ for a given forecasting horizon *h*
- *•* Define

$$
\overline{z}_{T} \equiv \frac{1}{T - h - t_{0}} \sum_{t = t_{0}}^{T - h} z_{t+h}
$$

$$
\widehat{\Omega}_{T} \equiv \frac{1}{T - h - t_{0}} \sum_{t = t_{0}}^{T - h} z_{t+h} z_{t+h}' + \frac{1}{T - h - t_{0}} \sum_{j=1}^{h-1} w_{j,T} \sum_{t = t_{0} + j}^{T - h} (z_{t+h-j} z_{t+h}' + z_{t+h} z_{t+h-j}')
$$

$$
w_{j,T} \to 1, \quad \text{as } T \to \infty \text{ for each } j \in \{1, ..., h-1\}
$$

• Under some regularity conditions, they show that as *T* diverges to ∞:

$$
W \equiv \mathcal{T} \cdot \mathbf{z}_{t+h}' \widehat{\Omega}_T^{-1} \mathbf{z}_{t+h} \xrightarrow{d} \chi_q^2 \tag{12}
$$

Conditioning Variables - Time Series

[Back](#page-35-0)

Non-Parametric Evidence on Conditional Predictive Ability

[Back](#page-35-0)

References I

Bauer, M. D. and Hamilton, J. D. (2018). Robust bond risk premia. *Review of Financial Studies*, 31(2):399–448.

- Bianchi, D., BÃijchner, M., and Tamoni, A. (2021). Bond risk premiums with machine learning. *Review of Financial Studies*, 34(2):1046–1089.
- Borup, D., Eriksen, J. N., Kjær, M. M., and Thyrsgaard, M. (2023). Predicting bond return predictability. *Management Science*.
- Cieslak, A. and Povala, P. (2015). Expected returns in treasury bonds. *Review of Financial Studies*, 28(10):2859–2901.
- Cooper, I. and Priestley, R. (2009). Time-varying risk premiums and the output gap. *Review of Financial Studies*, 22(7):2601–2633.

Dewachter, H. and Lyrio, M. (2006). Macro factors and the term structure of interest rates. *Journal of Money, Credit and Banking*, 38(1):119–140.

Diebold, F. X. and Li, C. (2006). Forecasting the term structure of government bond yields. *Journal of Econometrics*, 130(2):337–364.

- Diebold, F. X. and Rudebusch, G. D. (2013). *Yield curve modeling and forecasting: the dynamic Nelson-Siegel approach*. The Econometric and Tinbergen Institutes lectures. Princeton University Press, Princeton.
- Diebold, F. X., Rudebusch, G. D., and Aruoba, S. B. (2006). The macroeconomy and the yield curve: a dynamic latent factor approach. *Journal of Econometrics*, 131(1-2):309–338.

Duffee, G. (2013). Forecasting interest rates. In *Handbook of Economic Forecasting*, pages 385–426. Elsevier.

Fama, E. and Bliss, R. R. (1987). The information in long-maturity forward rates. *American Economic Review*, 77(4):680–92.

- Gargano, A., Pettenuzzo, D., and Timmermann, A. (2019). Bond return predictability: Economic value and links to the macroeconomy. *Management Science*, 65(2):508–540.
- Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. *Econometrica*, 74(6):1545–1578.
- Greenwood, R. and Vayanos, D. (2014). Bond supply and excess bond returns. *Review of Financial Studies*, 27(3):663–713.
- Gurkaynak, R. S., Sack, B., and Wright, J. H. (2007). The U.S. Treasury yield curve: 1961 to the present. *Journal of Monetary Economics*, 54(8):2291–2304.

Hoogteijling, T., Martens, M. P., and van der Wel, M. (2021). Forecasting bond risk premia using stationary yield factors. *SSRN Electronic Journal*.

References II

- HÃďnnikÃďinen, J. (2017). When does the yield curve contain predictive power? evidence from a data-rich environment. *International Journal of Forecasting*, 33(4):1044–1064.
- Joslin, S., Priebsch, M., and Singleton, K. (2014). Risk premiums in dynamic term structure models with unspanned macro risks. *Journal of Finance*, 69(3):1197–1233.
- Liu, Y. and Wu, C. (2021). Reconstructing the yield curve. *Journal of Financial Economics*, 142(3):1395–1425.

Ludvigson, S. and Ng, S. (2009). Macro factors in bond risk premia. *Review of Financial Studies*, 22(12):5027–5067.

McCracken, M. W. and Ng, S. (2016). Fred-md: A monthly database for macroeconomic research. *Journal of Business & Economic Statistics*, 34(4):574–589.

Nelson, C. and Siegel, A. F. (1987). Parsimonious modeling of yield curves. *Journal of Business*, 60(4):473–89.

- Piazzesi, M. and Schneider, M. (2007). Equilibrium Yield Curves. In *NBER Macroeconomics Annual 2006, Volume 21*, NBER Chapters, pages 389–472. National Bureau of Economic Research, Inc.
- Rudebusch, G. D. and Swanson, E. T. (2012). The bond premium in a dsge model with long-run real and nominal risks. *American Economic Journal: Macroeconomics*, 4(1):105–143.
- Rudebusch, G. D. and Wu, T. (2008). A macro-finance model of the term structure, monetary policy and the economy. *The Economic Journal*, 118(530):906–926.

Sarno, L., Schneider, P., and Wagner, C. (2016). The economic value of predicting bond risk premia. *Journal of Empirical Finance*, 37(C):247–267.

Thornton, D. L. and Valente, G. (2012). Out-of-sample predictions of bond excess returns and forward rates: An asset allocation perspective. *Review of Financial Studies*, 25(10):3141–3168.

van der Wel, M. and Zhang, Y. (2021). Global evidence on unspanned macro risks in dynamic term structure models. *SSRN Electronic Journal*.

van Dijk, D., Koopman, S. J., van der Wel, M., and Wright, J. H. (2013). Forecasting interest rates with shifting endpoints. *Journal of Applied Econometrics*, 29(5):693–712.

Wachter, J. (2006). A consumption-based model of the term structure of interest rates. *Journal of Financial Economics*, 79(2):365–399.