How much unspanned volatility can different shocks explain?

Raul Riva

Northwestern University

Encontro Brasileiro de Finanças - 2024

Curitiba, Brasil

July, 2024

Intro

Why should we care about *volatility* in the nominal US yield curve?

- **1** Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- **3** Risk management of large bond portfolios from institutional investors;

Intro

Why should we care about *volatility* in the nominal US yield curve?

- **1** Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- **3** Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

- Workhorse: dynamic term structure models (very often affine ones):
- Tractable formulas for yields $+$ arbitrage-free framework $+$ convenient for estimation;
- Model-consistent separation between term premia and expected future short rates;

Intro

Why should we care about *volatility* in the nominal US yield curve?

- **1** Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- **3** Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

- Workhorse: dynamic term structure models (very often affine ones):
- Tractable formulas for yields $+$ arbitrage-free framework $+$ convenient for estimation;
- Model-consistent separation between term premia and expected future short rates;
- Good cross-sectional fit of yields, usually poor time-series dynamics;
- In general: sharp restrictions of how yield curve data should behave;
- Important today: observed volatility in yields should be tightly connected to the cross-section of yields;

Can affine term structure models account for volatility in yields?

Mostly, no. In general, there is more variation than models allow. Some approaches:

- Regress returns from straddles on interest rate changes;
	- ▶ [Collin-Dufresne & Goldstein \(2002\)](#page-61-0); [Li & Zhao \(2006\)](#page-62-0)
- Regress changes of implied volatility from options/swaptions on interest rate changes;
	- ▶ [Filipovic et al. \(2017\)](#page-62-1); [Backwell \(2021\)](#page-61-1)
- Likelihood-ratio tests for conditions that connect yield volatility and in yield levels;
	- ▶ [Bikbov & Chernov \(2009\)](#page-61-2)
- State-price density estimation from options data;
	- \blacktriangleright [Li & Zhao \(2009\)](#page-62-2)
- Restrictions from high-frequency data that spanning should impose;
	- ▶ [Andersen & Benzoni \(2010\)](#page-61-3)
	- \triangleright Closest paper to mine, but we deal with jumps and different maturities very differently;

Any room for improvement?

- Jump-diffusion settings are not so common, but jumps are prevalent in bond markets [\(Piazzesi, 2010\)](#page-62-3);
- What derivatives to use in an empirical test? Results seem dependent on this choice;
	- ▶ Swaptions? Caps and floors? Straddles?
	- ▶ At the money? Out of the money? In the money?
	- \blacktriangleright Liquidity and availability of strikes also depend on overall volatility itself...
- Analyses done at the individual maturity levels: too many degrees of freedom;
	- \triangleright What maturities should we pay attention to?
	- \triangleright Are any maturities systematically different than the others in any way?
- Crucially: attempts to tie "excessive" volatility to real-world developments are rare;
	- ▶ This is where the money is! Super important for derivative hedging!
	- ▶ What can explain this "unspanned" volatility? It's probably not just noise...

This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

- Implications for non-parametric measures of yield volatility within the affine framework;
- Only zero-coupon yields are needed no need to use data from derivative markets;
- I explicitly allow for jumps and I can measure how "jumpy" yields are over time;
- I don't analyze specific maturities, focus on a decomposition of the whole curve;
- Characterization of an *unspanned volatility* factor that explains 2/3 of the residual volatility DTSMs cannot account for;

This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

- Implications for non-parametric measures of yield volatility within the affine framework;
- Only zero-coupon yields are needed no need to use data from derivative markets;
- I explicitly allow for jumps and I can measure how "jumpy" yields are over time;
- I don't analyze specific maturities, focus on a decomposition of the whole curve;
- Characterization of an *unspanned volatility* factor that explains 2/3 of the residual volatility DTSMs cannot account for;

New empirical results: what can explain this unspanned volatility factor?

- I collect different shocks identified by the literature in monetary policy, fiscal policy, and oil shocks;
- Forward-guidance-type shocks, oil, and fiscal policy shocks help driving this factor;
- But they explain no more than $\approx 12\%$. There is still a lot to explain (and write about!).

Data

- Yield curve data: daily zero-coupon curve from [Liu & Wu \(2021\)](#page-62-4), from 1973 to 2022;
	- ▶ I use maturities from 1 month to 10 years;
	- \triangleright My methodology requires a balanced panel of yields;
- Monetary policy shocks from [Swanson \(2021\)](#page-63-0) monthly frequency;
	- ▶ Separation between Fed Funds rate surprises, forward-guidance shocks, and QE-type shocks;
- Oil shocks identified from Känzig (2021) monthly frequency;
	- \triangleright These are innovations to the real price of oil:
- Fiscal shocks from different sources quarterly frequency:
	- Defense spending shocks from [Ramey \(2011\)](#page-63-1) and [Ramey & Zubairy \(2018\)](#page-63-2);
	- ▶ Tax policy shocks from [Romer & Romer \(2010\)](#page-63-3);
	- ▶ Stock returns from top US government defense contractors [Fisher & Peters \(2010\)](#page-62-6);

Flight plan for today

- **1** Basics of an affine term structure model $+$ implications for the quadratic variation process;
- 2 A decomposition of the yield curve using Nelson-Siegel factors;
- $\overline{3}$ Data + empirical results: unspanned volatility across the entire maturity spectrum;
	- \blacktriangleright Characterization of the unspanned volatility factor;
- 4 How much of unspanned volatility can different shocks explain? Let's project it out!
	- \blacktriangleright Monetary policy shocks;
	- ▶ Oil price shocks;
	- \blacktriangleright Fiscal policy shocks;

$$
dX_t = K(\Theta - X_t) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t dN_t^Q \qquad (1)
$$

$$
dX_t = K(\Theta - X_t) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t dN_t^Q \qquad (1)
$$

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$
S_{t,[ii]} = s_{0,i} + s'_{1,i} X_t \tag{2}
$$

$$
dX_t = K(\Theta - X_t) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t dN_t^Q \qquad (1)
$$

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$
S_{t,[ii]} = s_{0,i} + s'_{1,i} X_t \tag{2}
$$

- $\bullet \;\; W^Q_t$ is a Brownian Motion and \mathcal{N}^Q_t a Poisson process with intensity $\lambda_t = \lambda_0 + \lambda'_1 X_t;$
- \bullet $Z_t \sim \nu^Q$ represents a jump size, is independent of both W^Q_t and \mathcal{N}^Q_t , with $\mathbb{E}[Z_tZ_t']=\Omega;$

$$
dX_t = K(\Theta - X_t) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t dN_t^Q \qquad (1)
$$

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$
S_{t,[ii]} = s_{0,i} + s'_{1,i} X_t \tag{2}
$$

- $\bullet \;\; W^Q_t$ is a Brownian Motion and \mathcal{N}^Q_t a Poisson process with intensity $\lambda_t = \lambda_0 + \lambda'_1 X_t;$
- \bullet $Z_t \sim \nu^Q$ represents a jump size, is independent of both W^Q_t and \mathcal{N}^Q_t , with $\mathbb{E}[Z_tZ_t']=\Omega;$
- The short rate r_t is given by: $r_t = \delta_0 + \delta'_1 X_t$;

Bond Prices and Bond Yields

- \bullet This setup ensures that zero-coupon yields $y_t^{(\tau)}$ are an affine function of state variables;
- If we trade J fixed maturities $(\tau_1, ..., \tau_J)$ we can write for some vector A and matrix B:

$$
Y_t = A + BX_t \tag{3}
$$

Bond Prices and Bond Yields

- \bullet This setup ensures that zero-coupon yields $y_t^{(\tau)}$ are an affine function of state variables;
- If we trade J fixed maturities $(\tau_1, ..., \tau_J)$ we can write for some vector A and matrix B:

$$
Y_t = A + BX_t \tag{3}
$$

• If *B* is full column rank (and it is for the US market - [Bauer & Rudebusch \(2017\)](#page-61-4)):

$$
X_t = (B'B)^{-1}B'(Y_t - A) = \tilde{A} + \tilde{B}Y_t
$$
\n(4)

- \bullet This is a path-by-path condition: movements in yields should reveal movements in $X_t;$
- It connects the whole distribution of Y_t and X_t ;

The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M_t , given a partition $\{t_0 = t, t_1, ..., t_{n-1}, t_n = t + h\}$, we define its Quadratic Variation between t and $t + h$ as

$$
QV_M(t, t+h) \equiv \min_{\delta_n \to 0} \sum_{k=1}^n (M_{t_k} - M_{t_{k-1}})^2, \quad \delta_n \equiv \sup_{0 \le k \le n} \{t_k - t_{k-1}\}
$$
(5)

The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M_t , given a partition $\{t_0 = t, t_1, ..., t_{n-1}, t_n = t + h\}$, we define its Quadratic Variation between t and $t + h$ as

$$
QV_M(t, t+h) \equiv \min_{\delta_n \to 0} \sum_{k=1}^n (M_{t_k} - M_{t_{k-1}})^2, \quad \delta_n \equiv \sup_{0 \le k \le n} \{t_k - t_{k-1}\}
$$
(5)

Proposition 1

For any linear combination of yields $L_t = c' Y_t$, its Quadratic Variation between t and $t + h$ is

$$
QV_{L}(t, t+h) = \tilde{\gamma}_{0} + \sum_{\substack{j=1 \ \text{Should be spanned by average yields}}}^J \tilde{\gamma}_{1,j} \cdot \overline{y}^{(\tau_{j})}(t, t+h) + \sum_{k=1}^{N_{t+h}-N_{t}} v^{\prime} Z_{T_{k}(t,t+h)} Z'_{T_{k}(t,t+h)} v
$$
(6)

where $\overline{y}^{(\tau_j)}(t,t+h) \equiv \frac{1}{h}$ $\frac{1}{h}\int_{t}^{t+h}{y_{s}^{(\tau_{j})}}ds$, $\{\tilde{\gamma}_{0},\tilde{\gamma}_{1}\}$ and v depend on parameters;

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate **both** the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate **both** the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 [\(Barndorff-Nielsen & Shephard \(2004,](#page-61-5) [2006\)](#page-61-6))

For a real-valued process M_t , we define the Bipower Variation process over $[t,t+h]$ as:

$$
BPV_M(t, t+h) \equiv \min_{n \to \infty} \sum_{i=2}^n \left| M_{t+i \cdot \frac{h}{n}} - M_{t+(i-1) \cdot \frac{h}{n}} \right| \left| M_{t+(i-1) \cdot \frac{h}{n}} - M_{t+(i-2) \cdot \frac{h}{n}} \right| \tag{7}
$$

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate **both** the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 [\(Barndorff-Nielsen & Shephard \(2004,](#page-61-5) [2006\)](#page-61-6))

For a real-valued process M_t , we define the Bipower Variation process over $[t,t+h]$ as:

$$
BPV_M(t, t+h) \equiv \min_{n \to \infty} \sum_{i=2}^n \left| M_{t+i \cdot \frac{h}{n}} - M_{t+(i-1) \cdot \frac{h}{n}} \right| \left| M_{t+(i-1) \cdot \frac{h}{n}} - M_{t+(i-2) \cdot \frac{h}{n}} \right| \tag{7}
$$

Proposition 2

Under this setup, the Bipower Variation of $L_t = c' Y_t$ identifies the diffusive part of $Q V_L$:

$$
BPV_L(t, t+h) = \frac{2}{\pi} \cdot \left[\tilde{\gamma}_0 + \sum_{j=1}^J \tilde{\gamma}_{1,j} \cdot \overline{\mathbf{y}}^{(\tau_j)}(t, t+h) \right]
$$
(8)

- This condition can be tested:
	- \triangleright We can approximate both the LHS and RHS;
	- ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients $+$ high R^2 ;

- This condition can be tested:
	- \triangleright We can approximate both the LHS and RHS;
	- ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients $+$ high R^2 ;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation [\(Litterman & Scheinkman \(1991\)](#page-62-7));
- A common decomposition is the one from [Nelson & Siegel \(1987\)](#page-62-8):
- Three factors: a long-run factor β_1 , a short-run factor β_2 , and a medium-run factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;

- This condition can be tested:
	- \triangleright We can approximate both the LHS and RHS;
	- ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients $+$ high R^2 ;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation [\(Litterman & Scheinkman \(1991\)](#page-62-7));
- A common decomposition is the one from [Nelson & Siegel \(1987\)](#page-62-8):
- Three factors: a long-run factor β_1 , a short-run factor β_2 , and a medium-run factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;
- My JMP shows that there is unspanned risk premium only through β_2 ;
- What about the second moments? Do we have **unspanned volatility** from every part of the curve?

- This condition can be tested:
	- \triangleright We can approximate both the LHS and RHS;
	- ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients $+$ high R^2 ;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation [\(Litterman & Scheinkman \(1991\)](#page-62-7));
- A common decomposition is the one from [Nelson & Siegel \(1987\)](#page-62-8):
- Three factors: a long-run factor β_1 , a short-run factor β_2 , and a medium-run factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;
- My JMP shows that there is unspanned risk premium only through β_2 ;
- What about the second moments? Do we have **unspanned volatility** from every part of the curve? SPOILER ALERT: yes.

The Nelson-Siegel Representation

- $\bullet\ y_t^{(\tau)}$ $t^{(1)}$: zero-coupon rate at time t and maturity τ ;
- $\lambda > 0$: a positive decay parameter;

$$
y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)
$$
(9)

•
$$
\beta_1
$$
 is a long-run factor: $\lim_{\tau \to \infty} y_t^{(\tau)} = \beta_{1,t};$

- β_2 is a short-run factor: its absolute loading decreases with τ ;
- β_3 is a medium-run factor: its loading is hump-shaped:

The Nelson-Siegel Representation

- $\bullet\ y_t^{(\tau)}$ $t^{(1)}$: zero-coupon rate at time t and maturity τ ;
- $\lambda > 0$: a positive decay parameter;

$$
y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)
$$
(9)

•
$$
\beta_1
$$
 is a long-run factor: $\lim_{\tau \to \infty} y_t^{(\tau)} = \beta_{1,t};$

- β_2 is a short-run factor: its absolute loading decreases with τ ;
- β_3 is a medium-run factor: its loading is hump-shaped:
- We set $\lambda = 0.0609$ and estimate the model by OLS date by date with $1 \leq \tau \leq 120$;
- Other estimation procedures? NLS, Recursive decay fitting, Kalman Filter...
- Hard to beat OLS in terms of stability of estimates (no numerical methods needed);
- [Diebold & Rudebusch \(2013\)](#page-61-7) and [Freire & Riva \(2023\)](#page-62-9) study these in detail;

Daily Factors

Average daily fitting error over maturities \approx 5bps; [Fitting error](#page-52-0) \overline{F} Fitting error

Variation Measures [Covariances](#page-53-0)

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i: bipower variation of factor $i \in \{1,2,3\}$;
- \bullet $BPCov_{i,j}$: bipower covariation between factor i and $j;$
- $BPCov_{i,i} = BPV_i$, for any *i*;

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i: bipower variation of factor $i \in \{1,2,3\}$;
- \bullet $BPCov_{i,j}$: bipower covariation between factor i and $j;$
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$
BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3
$$
 (10)

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i: bipower variation of factor $i \in \{1,2,3\}$;
- \bullet $BPCov_{i,j}$: bipower covariation between factor i and $j;$
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$
BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3
$$
 (10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i: bipower variation of factor $i \in \{1,2,3\}$;
- \bullet $BPCov_{i,j}$: bipower covariation between factor i and $j;$
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$
BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3
$$
 (10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

$$
BPCov_{i,j}(t) = \delta_{i,j} + \theta_{i,j}^{(1)}\overline{\beta}_{1,t} + \theta_{i,j}^{(2)}\overline{\beta}_{2,t} + \theta_{i,j}^{(3)}\overline{\beta}_{3,t} + \eta_{i,j}(t), \qquad i,j = 1,2,3 \qquad (11)
$$

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i: bipower variation of factor $i \in \{1,2,3\}$;
- \bullet $BPCov_{i,j}$: bipower covariation between factor i and $j;$
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$
BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3
$$
 (10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

$$
BPCov_{i,j}(t) = \delta_{i,j} + \theta_{i,j}^{(1)}\overline{\beta}_{1,t} + \theta_{i,j}^{(2)}\overline{\beta}_{2,t} + \theta_{i,j}^{(3)}\overline{\beta}_{3,t} + \eta_{i,j}(t), \qquad i,j = 1,2,3 \qquad (11)
$$

(Don't worry! Robustness checks in the paper!)

Test - Full Sample (1973-2022)

Table: Full Sample (1973-2022)

	BPV_1	BPV ₂	BPV_3	BPCov ₂₁	$BPCov_{31}$	BPCov ₃₂
Average β_1	$0.341***$	$0.561***$	$2.897***$	$-0.141**$	$-0.562**$	0.136
	(0.112)	(0.175)	(0.863)	(0.065)	(0.220)	(0.099)
Average β_2	$0.340*$	$0.874***$	$3.770***$	-0.152	$-0.639**$	0.038
	(0.174)	(0.318)	(1.382)	(0.106)	(0.303)	(0.100)
Average β_3	$-0.248**$	$-0.537***$	$-1.679*$	$0.194**$	0.253	0.028
	(0.116)	(0.206)	(0.880)	(0.076)	(0.168)	(0.078)
N	600	600	600	600	600	600
R^2	0.18	0.31	0.27	0.08	0.18	0.02

Test - Post-Volcker Sample

	BPV_1	BPV ₂	BPV_3	BPCov ₂₁	BPCov ₃₁	BPCov ₃₂
Average β_1	-0.026	-0.006	0.364	0.059	0.015	-0.044
	(0.044)	(0.051)	(0.296)	(0.038)	(0.055)	(0.055)
Average β_2	-0.054	-0.026	-0.558	0.077	-0.037	0.001
	(0.069)	(0.084)	(0.516)	(0.060)	(0.103)	(0.123)
Average β_3	-0.100	-0.145	-0.206	0.106	0.119	-0.069
	(0.082)	(0.090)	(0.517)	(0.071)	(0.105)	(0.083)
N	424	424	424	424	424	424
R^2	0.07	0.08	0.06	0.13	0.02	0.01

Table: Post-Volcker Sample (September, 1987 - December, 2022)

Is everything just noise?

- Each regression delivers a time series of residuals;
- Six residual series in total;

Is everything just noise?

- Each regression delivers a time series of residuals;
- Six residual series in total:

Figure: Spectral decomposition of residuals

- The first principal component of residuals commands 2/3 of the unexplained variation;
- If the failure of the previous tests were due to pure noise, we wouldn't see such a dominant factor;

How does this factor look like?

- Realizations are skewed, spiking up during recessions and major events;
- It's hard to make the case this is pure noise;

What can explain this factor?

- Much of the yield curve volatility is not accounted by affine term structure models;
- Spikes in the unspanned volatility seem related to monetary policy;
- How much of this factor can monetary policy explain?

$$
USV_t = \alpha + \theta \cdot |\text{Shock}_t| + u_t \tag{12}
$$

- Three types of monetary policy shocks from [Swanson \(2021\)](#page-63-0);
	- \triangleright Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
	- \blacktriangleright Identified using Fed Funds + Eurodollar futures (1991-2019);

What can explain this factor?

- Much of the yield curve volatility is not accounted by affine term structure models;
- Spikes in the unspanned volatility seem related to monetary policy;
- How much of this factor can monetary policy explain?

$$
USV_t = \alpha + \theta \cdot |\text{Shock}_t| + u_t \tag{12}
$$

- Three types of monetary policy shocks from [Swanson \(2021\)](#page-63-0);
	- \triangleright Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
	- \blacktriangleright Identified using Fed Funds + Eurodollar futures (1991-2019);
- What about oil price shocks? \uparrow inflation, \uparrow inflation expectations (Känzig, 2021);
	- Monthly frequency, identified with daily oil futures prices (1975-2022);
- This is about the US sovereign debt... can fiscal policy help explaining volatility? [\(Fisher](#page-62-6) [& Peters, 2010;](#page-62-6) [Romer & Romer, 2010;](#page-63-3) [Ramey, 2011;](#page-63-1) [Ramey & Zubairy, 2018\)](#page-63-2);

Monetary Policy

• 1 sd of $FG \approx \uparrow 6$ bps on future Fed Funds 1 year ahead; [Shocks Time Series](#page-56-0)

• Back of envelope: 25 bps worth of FG $\approx \uparrow 0.64$ standard deviations in unspanned vol;

How Jumpy Are The Factors?

- How much variation is coming from the diffusive part? How much from the jumps?
- Surprisingly stable over factors and over time!

$$
JV_i(t) \equiv \max\{RCov_{ii}(t) - BPV_i(t), 0\}, \qquad JR_i(t) \equiv \frac{JV_i(t)}{RCov_{ii}(t)}
$$
(13)

How Jumpy Are The Factors?

- How much variation is coming from the diffusive part? How much from the jumps?
- Surprisingly stable over factors and over time!

$$
JV_i(t) \equiv \max\{RCov_{ii}(t) - BPV_i(t), 0\}, \qquad JR_i(t) \equiv \frac{JV_i(t)}{RCov_{ii}(t)}
$$
(13)

Table: Average jumpiness of Nelson-Siegel factors

		JR_1 JR_2 JR_3	
Whole Sample (1973-2022)		0.172 0.158 0.170	
Months with MP activity		0.146 0.145 0.161	
Months without MP activity 0.150 0.149 0.157			
p-value for difference	በ 799	0.808	0.812

Oil Price Shocks $+$ Monetary Policy

Table: Projecting Jump-Robust Unspanned Vol

- 10% oil price increase $\approx \uparrow 0.42$ standard deviations of USV;
- Oil price shock identified through an external instrument futures price changes around OPEC meetings
- Oil shock $+$ monetary policy explain at most 13% of the unspanned volatility factor;

24 / 26

[Oil Shock Time Series](#page-57-0)

Fiscal Policy

Table: Projecting Unspanned Vol on Fiscal Policy Shocks

	(1)	(2)	(3)	(4)
Tax Changes	$0.67*$			$0.70*$
(Romer & Romer, 2010)	(0.39)			(0.39)
Defense Spending Shocks		0.04		-0.01
(Ramey & Zubairy, 2018)		(0.07)		(0.08)
Defense Contractors Returns			$0.03*$	0.02
(Fisher & Peters, 2010)			(0.02)	(0.02)
End of sample (quarterly data)	2007	2015	2008	2007
N	140	172	144	140
R^2	0.02	0.00	0.02	0.04

• A tax change worth 1% of GDP $\implies \uparrow$ 0.7 standard deviations of USV;

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Thank you!

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Thank you! (I'll be on the job market this year... got a spot for me? Let me know!)

[Appendix](#page-50-0)

[Figures](#page-51-0)

Fitting Error

[Back](#page-27-0)

Realized Covariances

Spectral Decomposition of RV Residuals

Unspanned Factors: RV vs BP

Monetary Policy Shocks from [Swanson \(2021\)](#page-63-0)

[Back](#page-41-0)

Oil Shocks from Känzig (2021)

[Back](#page-44-0)

Fiscal Shocks

[Math and Tables](#page-59-0)

Estimating Nelson-Siegel Factors with OLS

- We estimate the factors using OLS: regress yields on coefficients;
- $\lambda > 0$ is fixed;
- No need of numerical solutions!

$$
\begin{bmatrix}\n\widehat{\beta}_{1,t} \\
\widehat{\beta}_{2,t} \\
\widehat{\beta}_{3,t}\n\end{bmatrix} = (M'M)^{-1} M' Y_t, \qquad M \equiv \begin{bmatrix}\n1 & \frac{1 - e^{-\lambda \tau_1}}{\lambda \tau_1} & \frac{1 - e^{\lambda \tau_1}}{\lambda \tau_1} - e^{-\lambda \tau_1} \\
1 & \frac{1 - e^{-\lambda \tau_2}}{\lambda \tau_2} & \frac{1 - e^{\lambda \tau_2}}{\lambda \tau_2} - e^{-\lambda \tau_2} \\
\vdots & \vdots & \vdots \\
1 & \frac{1 - e^{-\lambda \tau_J}}{\lambda \tau_J} & \frac{1 - e^{\lambda \tau_J}}{\lambda \tau_J} - e^{-\lambda \tau_J}\n\end{bmatrix}
$$

[Back](#page-26-0)

.

References I

- Andersen, T. G. & Benzoni, L. (2010). Do bonds span volatility risk in the u.s. treasury market? a specification test for affine term structure models. The Journal of Finance, 65(2), 603–653.
- Backwell, A. (2021). Unspanned stochastic volatility from an empirical and practical perspective. Journal of Banking & Finance, 122, 105993.
- Barndorff-Nielsen, O. & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2(1), 1–37.
- Barndorff-Nielsen, O. & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics, 4(1), 1–30.
- Bauer, M. & Rudebusch, G. (2017). Resolving the spanning puzzle in macro-finance term structure models. Review of Finance, 21(2), 511–553.
- Bikbov, R. & Chernov, M. (2009). Unspanned stochastic volatility in affine models: Evidence from eurodollar futures and options. Management Science, 55(8), 1292–1305.
- Collin-Dufresne, P. & Goldstein, R. S. (2002). Do bonds span the fixed income markets? theory and evidence for unspanned stochastic volatility. The Journal of Finance, 57(4), 1685–1730.
- Diebold, F. X. & Rudebusch, G. D. (2013). Yield curve modeling and forecasting: the dynamic Nelson-Siegel approach. The Econometric and Tinbergen Institutes lectures. Princeton: Princeton University Press.

References II

- Filipovic, D., Larsson, M., & Trolle, A. (2017). Linear-rational term structure models. The Journal of Finance, 72(2), 655–704.
- Fisher, J. D. & Peters, R. (2010). Using stock returns to identify government spending shocks. The Economic Journal, 120(544), 414–436.
- Freire, G. & Riva, R. (2023). Asymmetric violations of the spanning hypothesis. SSRN Electronic Journal.
- Känzig, D. R. (2021). The macroeconomic effects of oil supply news: Evidence from opec announcements. American Economic Review, 111(4), 1092–1125.
- Li, H. & Zhao, F. (2006). Unspanned stochastic volatility: Evidence from hedging interest rate derivatives. The Journal of Finance, 61(1), 341–378.
- Li, H. & Zhao, F. (2009). Nonparametric estimation of state-price densities implicit in interest rate cap prices. Review of Financial Studies, 22(11), 4335–4376.
- Litterman, R. B. & Scheinkman, J. (1991). Common factors affecting bond returns. Journal of Fixed Income, 1(1), 54–61.
- Liu, Y. & Wu, C. (2021). Reconstructing the yield curve. Journal of Financial Economics, 142(3), 1395–1425.
- Nelson, C. & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 60(4), 473–89.
- Piazzesi, M. (2010). Affine Term Structure Models, (pp. 691–766). Elsevier.

References III

- Ramey, V. A. (2011). Identifying government spending shocks: It's all in the timing*. The Quarterly Journal of Economics, 126(1), 1–50.
- Ramey, V. A. & Zubairy, S. (2018). Government spending multipliers in good times and in bad: Evidence from us historical data. Journal of Political Economy, 126(2), 850-901.
- Romer, C. D. & Romer, D. H. (2010). The macroeconomic effects of tax changes: Estimates based on a new measure of fiscal shocks. American Economic Review, 100(3), 763–801.
- Swanson, E. T. (2021). Measuring the effects of federal reserve forward guidance and asset purchases on financial markets. Journal of Monetary Economics, 118, 32–53.