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Intro

Why should we care about volatility in the nominal US vyield curve?
Hedging of interest-rate derivatives: huge, liquid market with many players;
Tightly linked to volatility of holding returns for bonds: portfolio allocation;

Risk management of large bond portfolios from institutional investors;
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Intro

Why should we care about volatility in the nominal US vyield curve?
Hedging of interest-rate derivatives: huge, liquid market with many players;
Tightly linked to volatility of holding returns for bonds: portfolio allocation;

Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

e Workhorse: dynamic term structure models (very often affine ones);

Tractable formulas for yields 4 arbitrage-free framework 4 convenient for estimation;

Model-consistent separation between term premia and expected future short rates;

Good cross-sectional fit of yields, usually poor time-series dynamics;

In general: sharp restrictions of how yield curve data should behave;

Important today: observed volatility in yields should be tightly connected to the
cross-section of yields;
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Can affine term structure models account for volatility in yields?

Mostly, no. In general, there is more variation than models allow. Some approaches:

® Regress returns from straddles on interest rate changes;
> Collin-Dufresne & Goldstein (2002); Li & Zhao (2006)

Regress changes of implied volatility from options/swaptions on interest rate changes;
> Filipovic et al. (2017); Backwell (2021)

Likelihood-ratio tests for conditions that connect yield volatility and in yield levels;
» Bikbov & Chernov (2009)

® State-price density estimation from options data;
» Li & Zhao (2009)

® Restrictions from high-frequency data that spanning should impose;
» Andersen & Benzoni (2010)

» Closest paper to mine, but we deal with jumps and different maturities very differently;
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Any room for improvement?

e Jump-diffusion settings are not so common, but jumps are prevalent in bond markets
(Piazzesi, 2010);

® \What derivatives to use in an empirical test? Results seem dependent on this choice;

» Swaptions? Caps and floors? Straddles?
» At the money? Out of the money? In the money?
» Liquidity and availability of strikes also depend on overall volatility itself...

® Analyses done at the individual maturity levels: too many degrees of freedom;

» What maturities should we pay attention to?

» Are any maturities systematically different than the others in any way?

e Crucially: attempts to tie “excessive” volatility to real-world developments are rare;

» This is where the money is! Super important for derivative hedging!
» What can explain this “unspanned” volatility? It's probably not just noise...
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This project: two contributions
New methodology: a new test for excess volatility with a number of advantages;
® |mplications for non-parametric measures of yield volatility within the affine framework;

® Only zero-coupon yields are needed - no need to use data from derivative markets;

| explicitly allow for jumps and | can measure how “jumpy” yields are over time;

| don't analyze specific maturities, focus on a decomposition of the whole curve;

Characterization of an unspanned volatility factor that explains 2/3 of the residual

volatility DTSMs cannot account for;
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e | explicitly allow for jumps and | can measure how “jumpy” yields are over time;
® | don't analyze specific maturities, focus on a decomposition of the whole curve;
[}

Characterization of an unspanned volatility factor that explains 2/3 of the residual

volatility DTSMs cannot account for;

New empirical results: what can explain this unspanned volatility factor?
® | collect different shocks identified by the literature in monetary policy, fiscal policy, and
oil shocks;
® Forward-guidance-type shocks, oil, and fiscal policy shocks help driving this factor;

e But they explain no more than ~ 12%. There is still a lot to explain (and write about!).
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Data
e Yield curve data: daily zero-coupon curve from Liu & Wu (2021), from 1973 to 2022;

» | use maturities from 1 month to 10 years;

» My methodology requires a balanced panel of yields;

® Monetary policy shocks from Swanson (2021) - monthly frequency;
» Separation between Fed Funds rate surprises, forward-guidance shocks, and QE-type

shocks;

® Qil shocks identified from Kanzig (2021) - monthly frequency;

» These are innovations to the real price of oil;

e Fiscal shocks from different sources - quarterly frequency:
» Defense spending shocks from Ramey (2011) and Ramey & Zubairy (2018);

» Tax policy shocks from Romer & Romer (2010);
» Stock returns from top US government defense contractors Fisher & Peters (2010);

6/26



Flight plan for today

Basics of an affine term structure model + implications for the quadratic variation

process;

A decomposition of the yield curve using Nelson-Siegel factors;

Data + empirical results: unspanned volatility across the entire maturity spectrum;

» Characterization of the unspanned volatility factor;

How much of unspanned volatility can different shocks explain? Let’s project it out!
» Monetary policy shocks;
» Qil price shocks;

» Fiscal policy shocks;
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A Flexible Affine Setup

® There are N latent underlying risk factors X;. The evolution under @ follows:

dX; = K (© — X;) dt + Z/SedWE + Z,dN 8 (1)
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K and X are N x N constant matrices; © is an N x 1 vector of long-run means;

St is an N x N diagonal matrix whose diagonal elements follow:

St i) = So,i + 51, Xt (2)

° WtQ is a Brownian Motion and NtQ a Poisson process with intensity Ay = A\g + A} X¢;

Z, ~ 19 represents a jump size, is independent of both W,® and N8, with E[Z:Z!] = Q;

The short rate r; is given by: r; = dp + 01 Xt;
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Bond Prices and Bond Yields

® This setup ensures that zero-coupon yields yt(T) are an affine function of state variables;

e If we trade J fixed maturities (71, ..., 7,) we can write for some vector A and matrix B:
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Bond Prices and Bond Yields

This setup ensures that zero-coupon yields yt(T) are an affine function of state variables;

If we trade J fixed maturities (1, ..., 7y) we can write for some vector A and matrix B:

If B is full column rank (and it is for the US market - Bauer & Rudebusch (2017)):

X, = (B'B)'B/(Y, — A) = A+ BY, (4)

This is a path-by-path condition: movements in yields should reveal movements in Xi;

It connects the whole distribution of Y; and Xi;
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The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M, given a partition {to = t, t1,..., tn—1, tn = t + h}, we define its

Quadratic Variation between t and t + h as
n

. 2
QVum(t, t + h) = p-lim Z (My, — My, )", 0n= sup {tk — ti_1} (5)
500 71 0<k<n
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The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M, given a partition {to = t, t1,..., tn—1, tn = t + h}, we define its

Quadratic Variation between t and t —|— h as

2
QV/\//(t t+ h) = p-lim E Mtk Mtk—l) , O0p = sup {tk = tkfl} (5)
500 5 0<k<n

Proposition 1

For any linear combination of yields Ly = c’Y;, its Quadratic Variation between t and t+ h is

Nt+h*-/\/t
QVi(t,t+h) =740+ Zvl e t+h) + > VZreenZneny (6
k=1

/

Should be spanned by average yields ~ No requirement to span the jump-only part!

t+h

. ys(Tf)ds, {A0,71} and v depend on parameters;

where y(TJ)(t t+ h) = h
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Identification

® Measuring the QV of stochastic process is usually easy: Realized Variance!
® Here it would incorporate both the diffusive (spanned) part and the jump-driven part;

e Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

11/26



Identification

® Measuring the QV of stochastic process is usually easy: Realized Variance!
® Here it would incorporate both the diffusive (spanned) part and the jump-driven part;

e Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process M;, we define the Bipower Variation process over [t, t + h] as:

BPViy(t, t+ h) = p-lim > M, =M, i, (7)
2

n—00 ‘7

M in =M

t+(i—1)-2 +(i-1)-2

Sl
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Identification

® Measuring the QV of stochastic process is usually easy: Realized Variance!
® Here it would incorporate both the diffusive (spanned) part and the jump-driven part;

e Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process M;, we define the Bipower Variation process over [t, t + h] as:

BPV(t,t+ h) = Eiim > Myyit =My igyn || My oayn = My _o.e (7)
*j=2
Proposition 2
Under this setup, the Bipower Variation of Ly = c'Y; identifies the diffusive part of QV/y:
5 J
BPVi(t,t+h) == |5 51 - V(¢ t 4 h
Ltt+h)=="1F0+> Fu 7P (t,t+h) (8)

j=1
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A Test of Unspanned Volatility

® This condition can be tested:
» We can approximate both the LHS and RHS;

» | use daily data to compute these measures at the monthly frequency;

® Regressing bipower variation measures on average yields should yield significant

coefficients + high R?;
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A Test of Unspanned Volatility

® This condition can be tested:
» We can approximate both the LHS and RHS;

» | use daily data to compute these measures at the monthly frequency;

® Regressing bipower variation measures on average yields should yield significant

coefficients + high R?;

But why to focus on linear combinations of yields?...

US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));

® A common decomposition is the one from Nelson & Siegel (1987);

Three factors: a long-run factor $1, a short-run factor 82, and a medium-run factor 3s;

® Time-series characteristics of yields depend on how these factors evolve;

My JMP shows that there is unspanned risk premium only through (5;

What about the second moments? Do we have unspanned volatility from every part

of the curve? SPOILER ALERT: yes.
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The Nelson-Siegel Representation

° yt(T): zero-coupon rate at time t and maturity T;

® )\ > (0: a positive decay parameter;

. 1— e—)\'r 1— e—)\T e
Yt( ) — Bt + Bot (M_) + B3¢ <)\7_ —e? > 9)

® (31 is a long-run factor: lim y,fT) = Bt
T—00
® 3, is a short-run factor: its absolute loading decreases with 7;

® (3 is a medium-run factor: its loading is hump-shaped;
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The Nelson-Siegel Representation
(7).

® y. ’: zero-coupon rate at time t and maturity 7;

® )\ > (0: a positive decay parameter;
. 1— e—)\'r 1— e—)\T e
Yt( ) — Bl,t + 52,t (M_) + 63; <)\7_ —e? > (9)

® (31 is a long-run factor: lim y,fT) = Bt
T—00
® 3, is a short-run factor: its absolute loading decreases with 7;
® (3 is a medium-run factor: its loading is hump-shaped;
® We set A = 0.0609 and estimate the model by OLS date by date with 1 < 7 < 120;

® Other estimation procedures? NLS, Recursive decay fitting, Kalman Filter...

Hard to beat OLS in terms of stability of estimates (no numerical methods needed);
Diebold & Rudebusch (2013) and Freire & Riva (2023) study these in detail;
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Daily Factors

B1
104
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1973 1978 1983 1988 1993 1998 2003 2008 2013 2018
B2
51
04
5]
. . ; . : . . ; . .
1973 1978 1983 1988 1993 1998 2003 2008 2013 2018
B3
51
04
54
~10 . . . . . . . ; . .
1973 1978 1983 1988 1993 1998 2003 2008 2013 2018

Average daily fitting error over maturities = 5bps;

Fitting error
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Variation Measures
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Running the Test

e |f spanning holds, diffusive variation should be an affine function of average yields;

BPV;: bipower variation of factor i € {1,2,3};

BPCov; j: bipower covariation between factor i and j;
BPCov;; = BPV;, for any i;
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Running the Test

If spanning holds, diffusive variation should be an affine function of average yields;
BPV;: bipower variation of factor i € {1,2,3};

BPCov; j: bipower covariation between factor i and j;

BPCov;; = BPV;, for any i;

The derivations suggest the following regression:
BPCov;j(t) = 6jj+ 0; ;Y +niy(t),  i,j=1,2,3 (10)

But the yield curve has a low-rank factor structure... and what yields to include?

Why not use the Nelson-Siegel factors directly?
BPCovij(t) = 8 + 0By + 0080 + 0B+ mig(t),  ij=123 (11)

(Don't worry! Robustness checks in the paper!)
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Test - Full Sample (1973-2022)

Table: Full Sample (1973-2022)

BPV1 BPV2 BP\/3 BPCOV21 BPCOV31 BPCOV32

Average 51 0.341%*%*  (Q561*** 2897*** _0.141*%* _0.562** 0.136
(0.112)  (0.175)  (0.863)  (0.065)  (0.220)  (0.099)
Average 3,  0.340%* 0.874*** 3 770**%*  _0.152  -0.639** 0.038
(0.174)  (0.318)  (1.382)  (0.106)  (0.303)  (0.100)
Average 3 -0.248** -0.537***  _1.679* 0.194%* 0.253 0.028
(0.116)  (0.206)  (0.880)  (0.076)  (0.168)  (0.078)

N 600 600 600 600 600 600

R2 0.18 0.31 027 [008 0.8
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Test - Post-Volcker Sample

Table: Post-Volcker Sample (September, 1987 - December, 2022)

BPVl BPV2 BPV3 BPCOV21 BPCOV31 BPCOV32

Average 51 -0.026 -0.006 0.364 0.059 0.015 -0.044
(0.044) (0.051) (0.296) (0.038) (0.055) (0.055)
Average 5> -0.054 -0.026 -0.558 0.077 -0.037 0.001
(0.069) (0.084) (0.516) (0.060) (0.103) (0.123)
Average 53 -0.100 -0.145 -0.206 0.106 0.119 -0.069
(0.082) (0.090) (0.517) (0.071) (0.105) (0.083)

N 424 424 424 424 424 424
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Is everything just noise?

® Each regression delivers a time series of residuals;

® Six residual series in total;
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Is everything just noise?

® Each regression delivers a time series of residuals;

® Six residual series in total;

Figure: Spectral decomposition of residuals

08 . .
Period ® The first principal component of
0.7 1 B Full Sample .
s Post-Volcker residuals commands 2/3 of the
061 [ Pre-Volcker unexplained variation;
[
g 051
k|
£ 04l ® |f the failure of the previous
> 0.
= .
£ s tests were due to pure noise, we
S 034
~ , .
wouldn’t see such a dominant
0.2
factor;
011

PC1 PC2 PC3 PC4 PC5 PC6
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How does this factor look like?

Measured in Standard Deviations

12
April/80: Fed loosens policy too soon
10 \
July/81: recession, Fed increases monetary base
8 -
Late September/11, October/11: Operation Twist + Bundestag EU bailout
6 March/23: COVID-19
4 October/87: Black Monday, Dow drops 22.6%
/

2 -

0 -
_p{ May /75: Fed fights recession + Burns hearing October/98: LTCM Crisis December/08: Fed reaches ZLB

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

® Realizations are

skewed, spiking up during recessions and major events;

® |t's hard to make the case this is pure noise;

2025
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What can explain this factor?

® Much of the yield curve volatility is not accounted by affine term structure models;
® Spikes in the unspanned volatility seem related to monetary policy;

® How much of this factor can monetary policy explain?
USVt:Oé+0 |Shockt|+ut (12)

® Three types of monetary policy shocks from Swanson (2021);

» Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
» Identified using Fed Funds + Eurodollar futures (1991-2019);
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What can explain this factor?

Much of the yield curve volatility is not accounted by affine term structure models;

Spikes in the unspanned volatility seem related to monetary policy;

® How much of this factor can monetary policy explain?

USVt =+ 0 - |Shockt| + U (12)

Three types of monetary policy shocks from Swanson (2021);

» Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
» Identified using Fed Funds + Eurodollar futures (1991-2019);

What about oil price shocks? 1 inflation, 1 inflation expectations (Kanzig, 2021);
» Monthly frequency, identified with daily oil futures prices (1975-2022);

This is about the US sovereign debt... can fiscal policy help explaining volatility? (Fisher
& Peters, 2010; Romer & Romer, 2010; Ramey, 2011; Ramey & Zubairy, 2018);
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Monetary Policy

First PC of Residuals Second PC of Residuals
(1) (2) (3) (4) (5) (6) (7) (8)
FFR 0.10 0.04 0.16* 0.15
(0.10) (0.09) (0.09) (0.09)
FG 0.17**  0.16** 0.30* 0.09 0.04 -0.03
(0.08) (0.07) (0.17) (0.07) (0.07) (0.18)
LSAP -0.05 0.02
(0.09) (0.07)
Sample 1991-2019 2009-2016 1991-2019 2009-2016
N 336 336 336 96 336 336 336 96
R? 0.01 0.03 0.03 0.08 0.03 0.01 0.03 0.00
® 1 sd of FG ~ 7 6 bps on future Fed Funds 1 year ahead;

® Back of envelope: 25 bps worth of FG & 1 0.64 standard deviations in unspanned vol;
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How Jumpy Are The Factors?

® How much variation is coming from the diffusive part? How much from the jumps?

e Surprisingly stable over factors and over time!

JV;(t) = max{RCov;(t) — BPV/(t),0}, JRi(t) = —— (13)
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How Jumpy Are The Factors?

® How much variation is coming from the diffusive part? How much from the jumps?

e Surprisingly stable over factors and over time!

JV;(t) = max{RCov;(t) — BPV/(t),0}, JRi(t) = —— (13)

Table: Average jumpiness of Nelson-Siegel factors

JR: JR> JR3

Whole Sample (1973-2022)  0.172 0.158 0.170

Months with MP activity 0.146 0.145 0.161
Months without MP activity 0.150 0.149 0.157

p-value for difference 0.799 0.808 0.812
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Qil Price Shocks + Monetary Policy

Table: Projecting Jump-Robust Unspanned Vol

(1) (2) (3) (4)
Oil Shock  0.42***  (0.43%*% (.43%* (.43**
(0.15) (0.18) (0.18) (0.18)

FFR 0.05 0.02
(0.06) (0.05)
FG 0.11%* 0.10**
(0.05) (0.05)

Sample 1975-2022 1991-2019
N 576 336 336 336
R? 0.02 0.09 0.12 0.13

® 10% oil price increase ~ 1 0.42

standard deviations of USV/;

® Qil price shock identified
through an external instrument -

futures price changes around
OPEC meetings

® Qil shock 4+ monetary policy
explain at most 13% of the

unspanned volatility factor;
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Fiscal Policy
Table: Projecting Unspanned Vol on Fiscal Policy Shocks

o @ 6 @

Tax Changes 0.67* 0.70%*
(Romer & Romer, 2010) (0.39) (0.39)
Defense Spending Shocks 0.04 -0.01
(Ramey & Zubairy, 2018) (0.07) (0.08)
Defense Contractors Returns 0.03*  0.02

(Fisher & Peters, 2010) (0.02) (0.02)
End of sample (quarterly data) 2007 2015 2008 2007
N 140 172 144 140

R? 0.02 0.00 0.02 0.04

® A tax change worth 1% of GDP = 1 0.7 standard deviations of USV/
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Wrap Up
Main takeaways:
® | provide a jump-robust test for the presence of unspanned volatlity;
® | show that there is unspanned volatility steaming from the entire maturity spectrum;
® Unspanned volatility can be characterized by a single factor, which | formally

characterize;

This factor is partially driven by monetary policy, fiscal policy, and oil shocks;

Still a lot to explain!
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Wrap Up
Main takeaways:
® | provide a jump-robust test for the presence of unspanned volatlity;
® | show that there is unspanned volatility steaming from the entire maturity spectrum;
® Unspanned volatility can be characterized by a single factor, which | formally

characterize;

This factor is partially driven by monetary policy, fiscal policy, and oil shocks;

Still a lot to explain!

Going forward:
e Allow for more general dynamics between the unspanned vol factor and shocks? VARs?

® What kind of other sources of variation are interesting here?

Thank you! (I'll be on the job market this year... got a spot for me? Let me know!)‘

26 /26



Appendix

1/14



Figures

2/14



Fitting Error

Average Fitting Error

301

251

201

15 1

Basis Points per Year

10

1973 1978 1983 1988 1993 1998 2003 2008 2013 2018

3/14



Realized Covariances
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Spectral Decomposition of RV Residuals
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Unspanned Factors: RV vs BP
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Monetary Policy Shocks from Swanson (2021)
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Oil Shocks from Kanzig (2021)
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Fiscal Shocks

Romer and Romer (2010) - Tax Changes
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Estimating Nelson-Siegel Factors with OLS

e We estimate the factors using OLS: regress yields on coefficients;
® )\ > 0is fixed;

® No need of numerical solutions!
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