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Intro

Why should we care about volatility in the nominal US yield curve?

1 Hedging of interest-rate derivatives: huge, liquid market with many players;

2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;

3 Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

• Workhorse: dynamic term structure models (very often affine ones);

• Tractable formulas for yields + arbitrage-free framework + convenient for estimation;

• Model-consistent separation between term premia and expected future short rates;

• Good cross-sectional fit of yields, usually poor time-series dynamics;

• In general: sharp restrictions of how yield curve data should behave;

• Important today: observed volatility in yields should be tightly connected to the

cross-section of yields;
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Can affine term structure models account for volatility in yields?

Mostly, no. In general, there is more variation than models allow. Some approaches:

• Regress returns from straddles on interest rate changes;

▶ Collin-Dufresne & Goldstein (2002); Li & Zhao (2006)

• Regress changes of implied volatility from options/swaptions on interest rate changes;

▶ Filipovic et al. (2017); Backwell (2021)

• Likelihood-ratio tests for conditions that connect yield volatility and in yield levels;

▶ Bikbov & Chernov (2009)

• State-price density estimation from options data;

▶ Li & Zhao (2009)

• Restrictions from high-frequency data that spanning should impose;

▶ Andersen & Benzoni (2010)

▶ Closest paper to mine, but we deal with jumps and different maturities very differently;
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Any room for improvement?

• Jump-diffusion settings are not so common, but jumps are prevalent in bond markets

(Piazzesi, 2010);

• What derivatives to use in an empirical test? Results seem dependent on this choice;

▶ Swaptions? Caps and floors? Straddles?

▶ At the money? Out of the money? In the money?

▶ Liquidity and availability of strikes also depend on overall volatility itself...

• Analyses done at the individual maturity levels: too many degrees of freedom;

▶ What maturities should we pay attention to?

▶ Are any maturities systematically different than the others in any way?

• Crucially: attempts to tie “excessive” volatility to real-world developments are rare;

▶ This is where the money is! Super important for derivative hedging!

▶ What can explain this “unspanned” volatility? It’s probably not just noise...
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This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

• Implications for non-parametric measures of yield volatility within the affine framework;

• Only zero-coupon yields are needed - no need to use data from derivative markets;

• I explicitly allow for jumps and I can measure how “jumpy” yields are over time;

• I don’t analyze specific maturities, focus on a decomposition of the whole curve;

• Characterization of an unspanned volatility factor that explains 2/3 of the residual

volatility DTSMs cannot account for;

New empirical results: what can explain this unspanned volatility factor?

• I collect different shocks identified by the literature in monetary policy, fiscal policy, and

oil shocks;

• Forward-guidance-type shocks, oil, and fiscal policy shocks help driving this factor;

• But they explain no more than ≈ 12%. There is still a lot to explain (and write about!).
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Data

• Yield curve data: daily zero-coupon curve from Liu & Wu (2021), from 1973 to 2022;

▶ I use maturities from 1 month to 10 years;

▶ My methodology requires a balanced panel of yields;

• Monetary policy shocks from Swanson (2021) - monthly frequency;

▶ Separation between Fed Funds rate surprises, forward-guidance shocks, and QE-type

shocks;

• Oil shocks identified from Känzig (2021) - monthly frequency;

▶ These are innovations to the real price of oil;

• Fiscal shocks from different sources - quarterly frequency:

▶ Defense spending shocks from Ramey (2011) and Ramey & Zubairy (2018);

▶ Tax policy shocks from Romer & Romer (2010);

▶ Stock returns from top US government defense contractors Fisher & Peters (2010);
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Flight plan for today

1 Basics of an affine term structure model + implications for the quadratic variation

process;

2 A decomposition of the yield curve using Nelson-Siegel factors;

3 Data + empirical results: unspanned volatility across the entire maturity spectrum;

▶ Characterization of the unspanned volatility factor;

4 How much of unspanned volatility can different shocks explain? Let’s project it out!

▶ Monetary policy shocks;

▶ Oil price shocks;

▶ Fiscal policy shocks;
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A Flexible Affine Setup

• There are N latent underlying risk factors Xt . The evolution under Q follows:

dXt = K (Θ− Xt) dt +Σ
√

StdW
Q
t + ZtdNQ

t (1)

• K and Σ are N × N constant matrices; Θ is an N × 1 vector of long-run means;

• St is an N × N diagonal matrix whose diagonal elements follow:

St,[ii ] = s0,i + s ′1,iXt (2)

• WQ
t is a Brownian Motion and NQ

t a Poisson process with intensity λt = λ0 + λ′
1Xt ;

• Zt ∼ νQ represents a jump size, is independent of both WQ
t and NQ

t , with E[ZtZ
′
t ] = Ω;

• The short rate rt is given by: rt = δ0 + δ′1Xt ;
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Bond Prices and Bond Yields

• This setup ensures that zero-coupon yields y
(τ)
t are an affine function of state variables;

• If we trade J fixed maturities (τ1, ..., τJ) we can write for some vector A and matrix B:

Yt = A+ BXt (3)

• If B is full column rank (and it is for the US market - Bauer & Rudebusch (2017)):

Xt = (B ′B)−1B ′(Yt − A) = Ã+ B̃Yt (4)

• This is a path-by-path condition: movements in yields should reveal movements in Xt ;

• It connects the whole distribution of Yt and Xt ;
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The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process Mt , given a partition {t0 = t, t1, ..., tn−1, tn = t + h}, we define its

Quadratic Variation between t and t + h as

QVM(t, t + h) ≡ p-lim
δn→0

n∑
k=1

(
Mtk −Mtk−1

)2
, δn ≡ sup

0≤k≤n
{tk − tk−1} (5)

Proposition 1

For any linear combination of yields Lt = c ′Yt , its Quadratic Variation between t and t+h is

QVL(t, t + h) = γ̃0 +
J∑

j=1

γ̃1,j · y (τj )(t, t + h)︸ ︷︷ ︸
Should be spanned by average yields

+

Nt+h−Nt∑
k=1

v ′ZTk (t,t+h)Z
′
Tk (t,t+h)v︸ ︷︷ ︸

No requirement to span the jump-only part!

(6)

where y (τj )(t, t + h) ≡ 1
h

∫ t+h
t y

(τj )
s ds, {γ̃0, γ̃1} and v depend on parameters;
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Identification

• Measuring the QV of stochastic process is usually easy: Realized Variance!

• Here it would incorporate both the diffusive (spanned) part and the jump-driven part;

• Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process Mt , we define the Bipower Variation process over [t, t + h] as:

BPVM(t, t + h) ≡ p-lim
n→∞

n∑
i=2

∣∣∣∣Mt+i · h
n
−Mt+(i−1)· h

n

∣∣∣∣∣∣∣∣Mt+(i−1)· h
n
−Mt+(i−2)· h

n

∣∣∣∣ (7)

Proposition 2

Under this setup, the Bipower Variation of Lt = c ′Yt identifies the diffusive part of QVL:

BPVL(t, t + h) =
2

π
·

γ̃0 + J∑
j=1

γ̃1,j · y (τj )(t, t + h)

 (8)
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A Test of Unspanned Volatility

• This condition can be tested:

▶ We can approximate both the LHS and RHS;

▶ I use daily data to compute these measures at the monthly frequency;

• Regressing bipower variation measures on average yields should yield significant

coefficients + high R2;

But why to focus on linear combinations of yields?...

• US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));

• A common decomposition is the one from Nelson & Siegel (1987);

• Three factors: a long-run factor β1, a short-run factor β2, and a medium-run factor β3;

• Time-series characteristics of yields depend on how these factors evolve;

• My JMP shows that there is unspanned risk premium only through β2;

• What about the second moments? Do we have unspanned volatility from every part

of the curve? SPOILER ALERT: yes.
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The Nelson-Siegel Representation

• y
(τ)
t : zero-coupon rate at time t and maturity τ ;

• λ > 0: a positive decay parameter;

y
(τ)
t = β1,t + β2,t

(
1− e−λτ

λτ

)
+ β3,t

(
1− e−λτ

λτ
− e−λτ

)
(9)

• β1 is a long-run factor: lim
τ→∞

y
(τ)
t = β1,t ;

• β2 is a short-run factor: its absolute loading decreases with τ ;

• β3 is a medium-run factor: its loading is hump-shaped;

• We set λ = 0.0609 and estimate the model by OLS date by date with 1 ≤ τ ≤ 120;

• Other estimation procedures? NLS, Recursive decay fitting, Kalman Filter...

• Hard to beat OLS in terms of stability of estimates (no numerical methods needed);

• Diebold & Rudebusch (2013) and Freire & Riva (2023) study these in detail;

How to estimate this???
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Daily Factors
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Variation Measures Covariances
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Running the Test

• If spanning holds, diffusive variation should be an affine function of average yields;

• BPVi : bipower variation of factor i ∈ {1, 2, 3};
• BPCovi ,j : bipower covariation between factor i and j ;

• BPCovi ,i = BPVi , for any i ;

• The derivations suggest the following regression:

BPCovi ,j(t) = δi ,j + θ′i ,jY t + ηi ,j(t), i , j = 1, 2, 3 (10)

• But the yield curve has a low-rank factor structure... and what yields to include?

• Why not use the Nelson-Siegel factors directly?

BPCovi ,j(t) = δi ,j + θ
(1)
i ,j β1,t + θ

(2)
i ,j β2,t + θ

(3)
i ,j β3,t + ηi ,j(t), i , j = 1, 2, 3 (11)

(Don’t worry! Robustness checks in the paper!)
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BPCovi ,j(t) = δi ,j + θ′i ,jY t + ηi ,j(t), i , j = 1, 2, 3 (10)

• But the yield curve has a low-rank factor structure... and what yields to include?

• Why not use the Nelson-Siegel factors directly?

BPCovi ,j(t) = δi ,j + θ
(1)
i ,j β1,t + θ

(2)
i ,j β2,t + θ

(3)
i ,j β3,t + ηi ,j(t), i , j = 1, 2, 3 (11)

(Don’t worry! Robustness checks in the paper!)
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Test - Full Sample (1973-2022)

Table: Full Sample (1973-2022)

BPV1 BPV2 BPV3 BPCov21 BPCov31 BPCov32

Average β1 0.341*** 0.561*** 2.897*** -0.141** -0.562** 0.136

(0.112) (0.175) (0.863) (0.065) (0.220) (0.099)

Average β2 0.340* 0.874*** 3.770*** -0.152 -0.639** 0.038

(0.174) (0.318) (1.382) (0.106) (0.303) (0.100)

Average β3 -0.248** -0.537*** -1.679* 0.194** 0.253 0.028

(0.116) (0.206) (0.880) (0.076) (0.168) (0.078)

N 600 600 600 600 600 600

R2 0.18 0.31 0.27 0.08 0.18 0.02
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Test - Post-Volcker Sample

Table: Post-Volcker Sample (September, 1987 - December, 2022)

BPV1 BPV2 BPV3 BPCov21 BPCov31 BPCov32

Average β1 -0.026 -0.006 0.364 0.059 0.015 -0.044

(0.044) (0.051) (0.296) (0.038) (0.055) (0.055)

Average β2 -0.054 -0.026 -0.558 0.077 -0.037 0.001

(0.069) (0.084) (0.516) (0.060) (0.103) (0.123)

Average β3 -0.100 -0.145 -0.206 0.106 0.119 -0.069

(0.082) (0.090) (0.517) (0.071) (0.105) (0.083)

N 424 424 424 424 424 424

R2 0.07 0.08 0.06 0.13 0.02 0.01
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Is everything just noise?

• Each regression delivers a time series of residuals;

• Six residual series in total;

Figure: Spectral decomposition of residuals
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• The first principal component of

residuals commands 2/3 of the

unexplained variation;

• If the failure of the previous

tests were due to pure noise, we

wouldn’t see such a dominant

factor;

19 / 26



Is everything just noise?

• Each regression delivers a time series of residuals;

• Six residual series in total;

Figure: Spectral decomposition of residuals

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
V

ar
ia

nc
e

Period
Full Sample
Post-Volcker
Pre-Volcker

• The first principal component of

residuals commands 2/3 of the

unexplained variation;

• If the failure of the previous

tests were due to pure noise, we

wouldn’t see such a dominant

factor;

19 / 26



How does this factor look like?
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May/75: Fed fights recession + Burns hearing

April/80: Fed loosens policy too soon

July/81: recession, Fed increases monetary base

October/87: Black Monday, Dow drops 22.6%

October/98: LTCM Crisis December/08: Fed reaches ZLBDecember/08: Fed reaches ZLB

Late September/11, October/11: Operation Twist + Bundestag EU bailout

March/23: COVID-19

• Realizations are skewed, spiking up during recessions and major events;

• It’s hard to make the case this is pure noise;
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What can explain this factor?

• Much of the yield curve volatility is not accounted by affine term structure models;

• Spikes in the unspanned volatility seem related to monetary policy;

• How much of this factor can monetary policy explain?

USVt = α+ θ · |Shockt |+ ut (12)

• Three types of monetary policy shocks from Swanson (2021);

▶ Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;

▶ Identified using Fed Funds + Eurodollar futures (1991-2019);

• What about oil price shocks? ↑ inflation, ↑ inflation expectations (Känzig, 2021);

▶ Monthly frequency, identified with daily oil futures prices (1975-2022);

• This is about the US sovereign debt... can fiscal policy help explaining volatility? (Fisher

& Peters, 2010; Romer & Romer, 2010; Ramey, 2011; Ramey & Zubairy, 2018);
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Monetary Policy

First PC of Residuals Second PC of Residuals

(1) (2) (3) (4) (5) (6) (7) (8)

FFR 0.10 0.04 0.16* 0.15

(0.10) (0.09) (0.09) (0.09)

FG 0.17** 0.16** 0.30* 0.09 0.04 -0.03

(0.08) (0.07) (0.17) (0.07) (0.07) (0.18)

LSAP -0.05 0.02

(0.09) (0.07)

Sample 1991-2019 2009-2016 1991-2019 2009-2016

N 336 336 336 96 336 336 336 96

R2 0.01 0.03 0.03 0.08 0.03 0.01 0.03 0.00

• 1 sd of FG ≈ ↑ 6 bps on future Fed Funds 1 year ahead; Shocks Time Series

• Back of envelope: 25 bps worth of FG ≈ ↑ 0.64 standard deviations in unspanned vol;
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How Jumpy Are The Factors?

• How much variation is coming from the diffusive part? How much from the jumps?

• Surprisingly stable over factors and over time!

JVi (t) ≡ max{RCovii (t)− BPVi (t), 0}, JRi (t) ≡
JVi (t)

RCovii (t)
(13)

Table: Average jumpiness of Nelson-Siegel factors

JR1 JR2 JR3

Whole Sample (1973-2022) 0.172 0.158 0.170

Months with MP activity 0.146 0.145 0.161

Months without MP activity 0.150 0.149 0.157

p-value for difference 0.799 0.808 0.812
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Oil Price Shocks + Monetary Policy

Table: Projecting Jump-Robust Unspanned Vol

(1) (2) (3) (4)

Oil Shock 0.42*** 0.43** 0.43** 0.43**

(0.15) (0.18) (0.18) (0.18)

FFR 0.05 0.02

(0.06) (0.05)

FG 0.11** 0.10**

(0.05) (0.05)

Sample 1975-2022 1991-2019

N 576 336 336 336

R2 0.02 0.09 0.12 0.13

• 10% oil price increase ≈ ↑ 0.42

standard deviations of USV ;

• Oil price shock identified

through an external instrument -

futures price changes around

OPEC meetings

• Oil shock + monetary policy

explain at most 13% of the

unspanned volatility factor;

Oil Shock Time Series
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Fiscal Policy
Table: Projecting Unspanned Vol on Fiscal Policy Shocks

(1) (2) (3) (4)

Tax Changes 0.67* 0.70*

(Romer & Romer, 2010) (0.39) (0.39)

Defense Spending Shocks 0.04 -0.01

(Ramey & Zubairy, 2018) (0.07) (0.08)

Defense Contractors Returns 0.03* 0.02

(Fisher & Peters, 2010) (0.02) (0.02)

End of sample (quarterly data) 2007 2015 2008 2007

N 140 172 144 140

R2 0.02 0.00 0.02 0.04

• A tax change worth 1% of GDP =⇒ ↑ 0.7 standard deviations of USV ; Shocks Time Series
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Wrap Up

Main takeaways:

• I provide a jump-robust test for the presence of unspanned volatlity;

• I show that there is unspanned volatility steaming from the entire maturity spectrum;

• Unspanned volatility can be characterized by a single factor, which I formally

characterize;

• This factor is partially driven by monetary policy, fiscal policy, and oil shocks;

• Still a lot to explain!

Going forward:

• Allow for more general dynamics between the unspanned vol factor and shocks? VARs?

• What kind of other sources of variation are interesting here?

Thank you! (I’ll be on the job market this year... got a spot for me? Let me know!)
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Fitting Error
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Realized Covariances
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Spectral Decomposition of RV Residuals
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Unspanned Factors: RV vs BP
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Monetary Policy Shocks from Swanson (2021)
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Oil Shocks from Känzig (2021)
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Fiscal Shocks
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Math and Tables
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Estimating Nelson-Siegel Factors with OLS

• We estimate the factors using OLS: regress yields on coefficients;

• λ > 0 is fixed;

• No need of numerical solutions!
β̂1,t

β̂2,t

β̂3,t

 =
(
M ′M

)−1
M ′Yt , M ≡


1 1−e−λτ1

λτ1
1−eλτ1
λτ1

− e−λτ1

1 1−e−λτ2

λτ2
1−eλτ2
λτ2

− e−λτ2

...
...

...

1 1−e−λτJ

λτJ
1−eλτJ
λτJ

− e−λτJ

 .

Back
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