How much unspanned volatility can different shocks explain?

Raul Riva

Northwestern University

Encontro Brasileiro de Finanças - 2024 Curitiba, Brasil

July, 2024

Intro

Why should we care about *volatility* in the nominal US yield curve?

- **1** Hedging of interest-rate derivatives: huge, liquid market with many players;
- **2** Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- **3** Risk management of large bond portfolios from institutional investors;

Intro

Why should we care about *volatility* in the nominal US yield curve?

- Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- **3** Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

- Workhorse: dynamic term structure models (very often affine ones);
- Tractable formulas for yields + arbitrage-free framework + convenient for estimation;
- Model-consistent separation between term premia and expected future short rates;

Intro

Why should we care about *volatility* in the nominal US yield curve?

- Hedging of interest-rate derivatives: huge, liquid market with many players;
- 2 Tightly linked to volatility of holding returns for bonds: portfolio allocation;
- **3** Risk management of large bond portfolios from institutional investors;

Do we have good models for yield curve volatility? Yes and no:

- Workhorse: dynamic term structure models (very often affine ones);
- Tractable formulas for yields + arbitrage-free framework + convenient for estimation;
- Model-consistent separation between term premia and expected future short rates;
- Good cross-sectional fit of yields, usually poor time-series dynamics;
- In general: sharp restrictions of how yield curve data should behave;
- Important today: observed volatility in yields should be tightly connected to the cross-section of yields;

Can affine term structure models account for volatility in yields?

Mostly, no. In general, there is more variation than models allow. Some approaches:

- Regress returns from straddles on interest rate changes;
 - ► Collin-Dufresne & Goldstein (2002); Li & Zhao (2006)
- Regress changes of implied volatility from options/swaptions on interest rate changes;
 - ► Filipovic et al. (2017); Backwell (2021)
- Likelihood-ratio tests for conditions that connect yield volatility and in yield levels;
 - Bikbov & Chernov (2009)
- State-price density estimation from options data;
 - Li & Zhao (2009)
- Restrictions from high-frequency data that spanning should impose;
 - Andersen & Benzoni (2010)
 - Closest paper to mine, but we deal with jumps and different maturities very differently;

Any room for improvement?

- Jump-diffusion settings are not so common, but jumps are prevalent in bond markets (Piazzesi, 2010);
- What derivatives to use in an empirical test? Results seem dependent on this choice;
 - Swaptions? Caps and floors? Straddles?
 - At the money? Out of the money? In the money?
 - Liquidity and availability of strikes also depend on overall volatility itself...
- Analyses done at the individual maturity levels: too many degrees of freedom;
 - What maturities should we pay attention to?
 - Are any maturities systematically different than the others in any way?
- Crucially: attempts to tie "excessive" volatility to real-world developments are rare;
 - ► This is where the money is! Super important for derivative hedging!
 - ▶ What can explain this "unspanned" volatility? It's probably not just noise...

This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

- Implications for non-parametric measures of yield volatility within the affine framework;
- Only zero-coupon yields are needed no need to use data from derivative markets;
- I explicitly allow for jumps and I can measure how "jumpy" yields are over time;
- I don't analyze specific maturities, focus on a decomposition of the whole curve;
- Characterization of an *unspanned volatility* factor that explains 2/3 of the residual volatility DTSMs cannot account for;

This project: two contributions

New methodology: a new test for excess volatility with a number of advantages;

- Implications for non-parametric measures of yield volatility within the affine framework;
- Only zero-coupon yields are needed no need to use data from derivative markets;
- I explicitly allow for jumps and I can measure how "jumpy" yields are over time;
- I don't analyze specific maturities, focus on a decomposition of the whole curve;
- Characterization of an *unspanned volatility* factor that explains 2/3 of the residual volatility DTSMs cannot account for;

New empirical results: what can explain this unspanned volatility factor?

- I collect different shocks identified by the literature in monetary policy, fiscal policy, and oil shocks;
- Forward-guidance-type shocks, oil, and fiscal policy shocks help driving this factor;
- But they explain no more than pprox 12%. There is still a lot to explain (and write about!).

Data

- Yield curve data: daily zero-coupon curve from Liu & Wu (2021), from 1973 to 2022;
 - I use maturities from 1 month to 10 years;
 - My methodology requires a balanced panel of yields;
- Monetary policy shocks from Swanson (2021) monthly frequency;
 - Separation between Fed Funds rate surprises, forward-guidance shocks, and QE-type shocks;
- Oil shocks identified from Känzig (2021) monthly frequency;
 - These are innovations to the real price of oil;
- Fiscal shocks from different sources quarterly frequency:
 - Defense spending shocks from Ramey (2011) and Ramey & Zubairy (2018);
 - ► Tax policy shocks from Romer & Romer (2010);
 - ▶ Stock returns from top US government defense contractors Fisher & Peters (2010);

Flight plan for today

- Basics of an affine term structure model + implications for the quadratic variation process;
- 2 A decomposition of the yield curve using Nelson-Siegel factors;
- **3** Data + empirical results: unspanned volatility across the entire maturity spectrum;
 - Characterization of the unspanned volatility factor;
- 4 How much of unspanned volatility can different shocks explain? Let's project it out!
 - Monetary policy shocks;
 - Oil price shocks;
 - Fiscal policy shocks;

$$dX_t = K\left(\Theta - X_t\right)dt + \Sigma\sqrt{S_t}dW_t^Q + Z_td\mathcal{N}_t^Q \tag{1}$$

$$dX_t = K \left(\Theta - X_t\right) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t d\mathcal{N}_t^Q$$
(1)

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$S_{t,[ii]} = s_{0,i} + s'_{1,i} X_t \tag{2}$$

$$dX_t = K \left(\Theta - X_t\right) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t d\mathcal{N}_t^Q$$
(1)

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$S_{t,[ii]} = s_{0,i} + s'_{1,i} X_t \tag{2}$$

- W_t^Q is a Brownian Motion and \mathcal{N}_t^Q a Poisson process with intensity $\lambda_t = \lambda_0 + \lambda'_1 X_t$;
- $Z_t \sim \nu^Q$ represents a jump size, is independent of both W_t^Q and \mathcal{N}_t^Q , with $\mathbb{E}[Z_t Z_t'] = \Omega$;

$$dX_t = K \left(\Theta - X_t\right) dt + \Sigma \sqrt{S_t} dW_t^Q + Z_t d\mathcal{N}_t^Q$$
(1)

- K and Σ are $N \times N$ constant matrices; Θ is an $N \times 1$ vector of long-run means;
- S_t is an $N \times N$ diagonal matrix whose diagonal elements follow:

$$S_{t,[ii]} = s_{0,i} + s'_{1,i} X_t \tag{2}$$

- W_t^Q is a Brownian Motion and \mathcal{N}_t^Q a Poisson process with intensity $\lambda_t = \lambda_0 + \lambda'_1 X_t$;
- $Z_t \sim \nu^Q$ represents a jump size, is independent of both W_t^Q and \mathcal{N}_t^Q , with $\mathbb{E}[Z_t Z_t'] = \Omega$;
- The short rate r_t is given by: $r_t = \delta_0 + \delta'_1 X_t$;

Bond Prices and Bond Yields

- This setup ensures that zero-coupon yields $y_t^{(\tau)}$ are an affine function of state variables;
- If we trade J fixed maturities $(\tau_1, ..., \tau_J)$ we can write for some vector A and matrix B:

$$Y_t = A + BX_t \tag{3}$$

Bond Prices and Bond Yields

- This setup ensures that zero-coupon yields $y_t^{(\tau)}$ are an affine function of state variables;
- If we trade J fixed maturities $(\tau_1, ..., \tau_J)$ we can write for some vector A and matrix B:

$$Y_t = A + BX_t \tag{3}$$

• If B is full column rank (and it is for the US market - Bauer & Rudebusch (2017)):

$$X_t = (B'B)^{-1}B'(Y_t - A) = \tilde{A} + \tilde{B}Y_t$$
(4)

- This is a path-by-path condition: movements in yields should reveal movements in X_t ;
- It connects the whole distribution of Y_t and X_t ;

The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M_t , given a partition $\{t_0 = t, t_1, ..., t_{n-1}, t_n = t + h\}$, we define its Quadratic Variation between t and t + h as

$$QV_{\mathcal{M}}(t,t+h) \equiv \Pr_{\delta_n \to 0} \sum_{k=1} \left(M_{t_k} - M_{t_{k-1}} \right)^2, \quad \delta_n \equiv \sup_{0 \le k \le n} \{t_k - t_{k-1}\}$$
(5)

The Quadratic Variation Process

Definition 1 (Just a fancy variance!)

For a real-valued process M_t , given a partition $\{t_0 = t, t_1, ..., t_{n-1}, t_n = t + h\}$, we define its Quadratic Variation between t and t + h as

$$QV_{M}(t,t+h) \equiv \Pr_{\delta_{n} \to 0} \sum_{k=1}^{n} \left(M_{t_{k}} - M_{t_{k-1}} \right)^{2}, \quad \delta_{n} \equiv \sup_{0 \le k \le n} \{ t_{k} - t_{k-1} \}$$
(5)

Proposition 1

For any linear combination of yields $L_t = c' Y_t$, its Quadratic Variation between t and t + h is

$$QV_{L}(t,t+h) = \tilde{\gamma}_{0} + \underbrace{\sum_{j=1}^{J} \tilde{\gamma}_{1,j} \cdot \overline{y}^{(\tau_{j})}(t,t+h)}_{Should be spanned by average yields} + \underbrace{\sum_{k=1}^{\mathcal{N}_{t+h}-\mathcal{N}_{t}} v' Z_{\mathcal{T}_{k}(t,t+h)} Z'_{\mathcal{T}_{k}(t,t+h)} v}_{No \ requirement \ to \ span \ the \ jump-only \ part!}$$
(6)

where $\overline{y}^{(\tau_j)}(t, t+h) \equiv \frac{1}{h} \int_t^{t+h} y_s^{(\tau_j)} ds$, $\{\tilde{\gamma}_0, \tilde{\gamma}_1\}$ and v depend on parameters;

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate **both** the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate **both** the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process M_t , we define the Bipower Variation process over [t, t + h] as:

$$BPV_{M}(t,t+h) \equiv \Pr_{n \to \infty} \sum_{i=2}^{n} \left| M_{t+i \cdot \frac{h}{n}} - M_{t+(i-1) \cdot \frac{h}{n}} \right| \left| M_{t+(i-1) \cdot \frac{h}{n}} - M_{t+(i-2) \cdot \frac{h}{n}} \right|$$
(7)

Identification

- Measuring the QV of stochastic process is usually easy: Realized Variance!
- Here it would incorporate **both** the diffusive (spanned) part and the jump-driven part;
- Can we tease out the diffusive part from the jumps? Yes: Bipower Variation!

Definition 2 (Barndorff-Nielsen & Shephard (2004, 2006))

For a real-valued process M_t , we define the Bipower Variation process over [t, t + h] as:

$$BPV_{M}(t,t+h) \equiv \Pr_{n \to \infty} \sum_{i=2}^{n} \left| M_{t+i \cdot \frac{h}{n}} - M_{t+(i-1) \cdot \frac{h}{n}} \right| \left| M_{t+(i-1) \cdot \frac{h}{n}} - M_{t+(i-2) \cdot \frac{h}{n}} \right|$$
(7)

Proposition 2

Under this setup, the Bipower Variation of $L_t = c' Y_t$ identifies the diffusive part of QV_L :

$$BPV_{L}(t,t+h) = \frac{2}{\pi} \cdot \left[\tilde{\gamma}_{0} + \sum_{j=1}^{J} \tilde{\gamma}_{1,j} \cdot \overline{y}^{(\tau_{j})}(t,t+h) \right]$$
(8)

- This condition can be tested:
 - ► We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

- This condition can be tested:
 - We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));
- A common decomposition is the one from Nelson & Siegel (1987);
- Three factors: a long-run factor β_1 , a short-run factor β_2 , and a medium-run factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;

- This condition can be tested:
 - We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));
- A common decomposition is the one from Nelson & Siegel (1987);
- Three factors: a long-run factor β_1 , a short-run factor β_2 , and a medium-run factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;
- My JMP shows that there is unspanned **risk premium** only through β_2 ;
- What about the second moments? Do we have **unspanned volatility** from **every part** of the curve?

- This condition can be tested:
 - We can approximate both the LHS and RHS;
 - ▶ I use daily data to compute these measures at the *monthly* frequency;
- Regressing bipower variation measures on average yields should yield significant coefficients + high R²;

But why to focus on linear combinations of yields?...

- US yield curve admits a low-rank representation (Litterman & Scheinkman (1991));
- A common decomposition is the one from Nelson & Siegel (1987);
- Three factors: a long-run factor β_1 , a short-run factor β_2 , and a medium-run factor β_3 ;
- Time-series characteristics of yields depend on how these factors evolve;
- My JMP shows that there is unspanned **risk premium** only through β_2 ;
- What about the second moments? Do we have unspanned volatility from every part of the curve?
 SPOILER ALERT: yes.

The Nelson-Siegel Representation

- $y_t^{(\tau)}$: zero-coupon rate at time t and maturity τ ;
- $\lambda > 0$: a positive decay parameter;

$$y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)$$
(9)

•
$$\beta_1$$
 is a long-run factor: $\lim_{ au o \infty} y_t^{(au)} = eta_{1,t};$

- β_2 is a short-run factor: its absolute loading decreases with τ ;
- β_3 is a medium-run factor: its loading is hump-shaped;

The Nelson-Siegel Representation

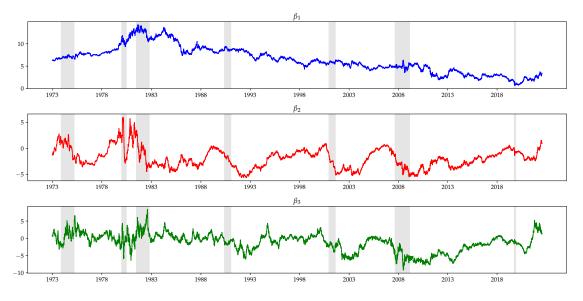
- $y_t^{(\tau)}$: zero-coupon rate at time *t* and maturity τ ;
- $\lambda > 0$: a positive decay parameter;

$$y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)$$
(9)

•
$$eta_1$$
 is a long-run factor: $\lim_{ au o \infty} y_t^{(au)} = eta_{1,t};$

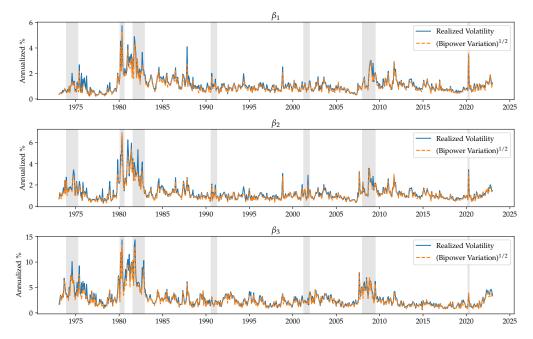
- β_2 is a short-run factor: its absolute loading decreases with τ ;
- β_3 is a medium-run factor: its loading is hump-shaped;
- We set $\lambda = 0.0609$ and estimate the model by OLS date by date with $1 \le \tau \le 120$;
- Other estimation procedures? NLS, Recursive decay fitting, Kalman Filter...
- Hard to beat OLS in terms of stability of estimates (no numerical methods needed);
- Diebold & Rudebusch (2013) and Freire & Riva (2023) study these in detail;

Daily Factors



Average daily fitting error over maturities \approx 5bps;

Variation Measures



- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- *BPCov_{i,j}*: bipower covariation between factor *i* and *j*;
- $BPCov_{i,i} = BPV_i$, for any *i*;

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- *BPCov_{i,j}*: bipower covariation between factor *i* and *j*;
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3$$
(10)

- If spanning holds, diffusive variation should be an affine function of average yields;
- BPV_i : bipower variation of factor $i \in \{1, 2, 3\}$;
- *BPCov_{i,j}*: bipower covariation between factor *i* and *j*;
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3$$
(10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

- If spanning holds, diffusive variation should be an affine function of average yields;
- *BPV_i*: bipower variation of factor $i \in \{1, 2, 3\}$;
- *BPCov_{i,j}*: bipower covariation between factor *i* and *j*;
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3$$
(10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta_{i,j}^{(1)}\overline{\beta}_{1,t} + \theta_{i,j}^{(2)}\overline{\beta}_{2,t} + \theta_{i,j}^{(3)}\overline{\beta}_{3,t} + \eta_{i,j}(t), \qquad i,j = 1, 2, 3 \qquad (11)$$

- If spanning holds, diffusive variation should be an affine function of average yields;
- *BPV_i*: bipower variation of factor $i \in \{1, 2, 3\}$;
- *BPCov_{i,j}*: bipower covariation between factor *i* and *j*;
- $BPCov_{i,i} = BPV_i$, for any *i*;
- The derivations suggest the following regression:

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta'_{i,j}\overline{Y}_t + \eta_{i,j}(t), \qquad i,j = 1,2,3$$
(10)

- But the yield curve has a low-rank factor structure... and what yields to include?
- Why not use the Nelson-Siegel factors directly?

$$BPCov_{i,j}(t) = \delta_{i,j} + \theta_{i,j}^{(1)}\overline{\beta}_{1,t} + \theta_{i,j}^{(2)}\overline{\beta}_{2,t} + \theta_{i,j}^{(3)}\overline{\beta}_{3,t} + \eta_{i,j}(t), \qquad i,j = 1, 2, 3$$
(11)

(Don't worry! Robustness checks in the paper!)

Test - Full Sample (1973-2022)

Table: Full Sample (1973-2022)

	BPV_1	BPV_2	BPV ₃	BPCov ₂₁	BPCov ₃₁	BPCov ₃₂
Average β_1	0.341***	0.561***	2.897***	-0.141**	-0.562**	0.136
	(0.112)	(0.175)	(0.863)	(0.065)	(0.220)	(0.099)
Average β_2	0.340*	0.874***	3.770***	-0.152	-0.639**	0.038
	(0.174)	(0.318)	(1.382)	(0.106)	(0.303)	(0.100)
Average β_3	-0.248**	-0.537***	-1.679*	0.194**	0.253	0.028
	(0.116)	(0.206)	(0.880)	(0.076)	(0.168)	(0.078)
N	600	600	600	600	600	600
R^2	0.18	0.31	0.27	0.08	0.18	0.02

Test - Post-Volcker Sample

	BPV_1	BPV_2	BPV ₃	BPCov ₂₁	BPCov ₃₁	BPCov ₃₂
Average β_1	-0.026	-0.006	0.364	0.059	0.015	-0.044
	(0.044)	(0.051)	(0.296)	(0.038)	(0.055)	(0.055)
Average β_2	-0.054	-0.026	-0.558	0.077	-0.037	0.001
	(0.069)	(0.084)	(0.516)	(0.060)	(0.103)	(0.123)
Average β_3	-0.100	-0.145	-0.206	0.106	0.119	-0.069
	(0.082)	(0.090)	(0.517)	(0.071)	(0.105)	(0.083)
N	424	424	424	424	424	424
R^2	0.07	0.08	0.06	0.13	0.02	0.01

Table: Post-Volcker Sample (September, 1987 - December, 2022)

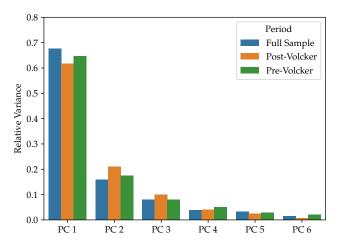
Is everything just noise?

- Each regression delivers a time series of residuals;
- Six residual series in total;

Is everything just noise?

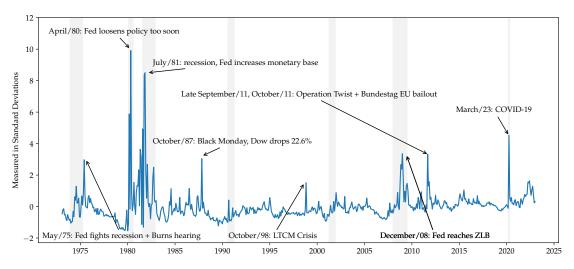
- Each regression delivers a time series of residuals;
- Six residual series in total;

Figure: Spectral decomposition of residuals



- The first principal component of residuals commands 2/3 of the unexplained variation;
- If the failure of the previous tests were due to pure noise, we wouldn't see such a dominant factor;

How does this factor look like?



- · Realizations are skewed, spiking up during recessions and major events;
- It's hard to make the case this is pure noise;

What can explain this factor?

- Much of the yield curve volatility is not accounted by affine term structure models;
- Spikes in the unspanned volatility seem related to monetary policy;
- How much of this factor can monetary policy explain?

$$USV_t = \alpha + \theta \cdot |\mathsf{Shock}_t| + u_t \tag{12}$$

- Three types of monetary policy shocks from Swanson (2021);
 - Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
 - ▶ Identified using Fed Funds + Eurodollar futures (1991-2019);

What can explain this factor?

- Much of the yield curve volatility is not accounted by affine term structure models;
- Spikes in the unspanned volatility seem related to monetary policy;
- How much of this factor can monetary policy explain?

$$USV_t = \alpha + \theta \cdot |\mathsf{Shock}_t| + u_t \tag{12}$$

- Three types of monetary policy shocks from Swanson (2021);
 - ▶ Pure Fed Funds rate surprise, a forward-guidance shock, and a QE-type shock;
 - Identified using Fed Funds + Eurodollar futures (1991-2019);
- What about oil price shocks? \uparrow inflation, \uparrow inflation expectations (Känzig, 2021);
 - Monthly frequency, identified with daily oil futures prices (1975-2022);
- This is about the US sovereign debt... can fiscal policy help explaining volatility? (Fisher & Peters, 2010; Romer & Romer, 2010; Ramey, 2011; Ramey & Zubairy, 2018);

Monetary Policy

	First PC of Residuals			Second PC of Residuals				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FFR	0.10		0.04		0.16*		0.15	
	(0.10)		(0.09)		(0.09)		(0.09)	
FG		0.17**	0.16**	0.30*		0.09	0.04	-0.03
		(0.08)	(0.07)	(0.17)		(0.07)	(0.07)	(0.18)
LSAP				-0.05				0.02
				(0.09)				(0.07)
Sample	1991-2019		2009-2016	1991-2019			2009-2016	
Ν	336	336	336	96	336	336	336	96
R^2	0.01	0.03	0.03	0.08	0.03	0.01	0.03	0.00

• 1 sd of FG $\approx \uparrow$ 6 bps on future Fed Funds 1 year ahead;

Shocks Time Series

• Back of envelope: 25 bps worth of FG $\approx \uparrow$ 0.64 standard deviations in unspanned vol;

How Jumpy Are The Factors?

- How much variation is coming from the diffusive part? How much from the jumps?
- Surprisingly stable over factors and over time!

$$JV_{i}(t) \equiv \max\{RCov_{ii}(t) - BPV_{i}(t), 0\}, \qquad JR_{i}(t) \equiv \frac{JV_{i}(t)}{RCov_{ii}(t)}$$
(13)

How Jumpy Are The Factors?

J

- How much variation is coming from the diffusive part? How much from the jumps?
- Surprisingly stable over factors and over time!

$$VV_i(t) \equiv \max\{RCov_{ii}(t) - BPV_i(t), 0\}, \qquad JR_i(t) \equiv \frac{JV_i(t)}{RCov_{ii}(t)}$$
 (13)

Table: Average jumpiness of Nelson-Siegel factors

	JR_1	JR ₂	JR ₃
Whole Sample (1973-2022)	0.172	0.158	0.170
Months with MP activity	0.146	0.145	0.161
Months without MP activity	0.150	0.149	0.157
<i>p</i> -value for difference	0.799	0.808	0.812

Oil Price Shocks + Monetary Policy

Table: Projecting Jump-Robust Unspanned Vol					
	(1)	(2)	(3)	(4)	
Oil Shock	0.42***	0.43**	0.43**	0.43**	
	(0.15)	(0.18)	(0.18)	(0.18)	
FFR		0.05		0.02	
		(0.06)		(0.05)	
FG			0.11**	0.10**	
			(0.05)	(0.05)	
Sample	1975-2022	1991-2019			
N	576	336	336	336	
R^2	0.02	0.09	0.12	0.13	

Table: Projecting Jump-Robust Unspanned Vol

- 10% oil price increase ≈ ↑ 0.42 standard deviations of USV;
- Oil price shock identified through an external instrument futures price changes around OPEC meetings
- Oil shock + monetary policy explain at most 13% of the unspanned volatility factor;

Oil Shock Time Series

Fiscal Policy

Table: Projecting Unspanned Vol on Fiscal Policy Shocks

	(1)	(2)	(3)	(4)
Tax Changes	0.67*			0.70*
(Romer & Romer, 2010)	(0.39)			(0.39)
Defense Spending Shocks		0.04		-0.01
(Ramey & Zubairy, 2018)		(0.07)		(0.08)
Defense Contractors Returns			0.03*	0.02
(Fisher & Peters, 2010)			(0.02)	(0.02)
End of sample (quarterly data)	2007	2015	2008	2007
Ν	140	172	144	140
R^2	0.02	0.00	0.02	0.04

• A tax change worth 1% of GDP $\implies \uparrow 0.7$ standard deviations of USV;

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Going forward:

- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Thank you!

Main takeaways:

- I provide a jump-robust test for the presence of unspanned volatlity;
- I show that there is unspanned volatility steaming from the entire maturity spectrum;
- Unspanned volatility can be characterized by a single factor, which I formally characterize;
- This factor is *partially* driven by monetary policy, fiscal policy, and oil shocks;
- Still a lot to explain!

Going forward:

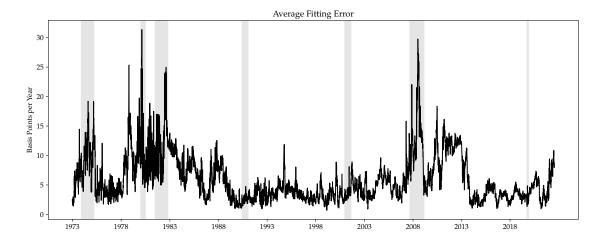
- Allow for more general dynamics between the unspanned vol factor and shocks? VARs?
- What kind of other sources of variation are interesting here?

Thank you! (I'll be on the job market this year... got a spot for me? Let me know!)

Appendix

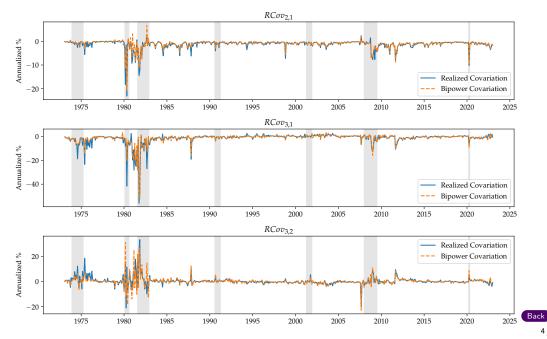
Figures

Fitting Error

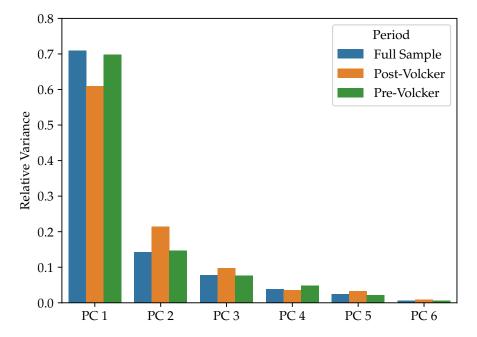


Back

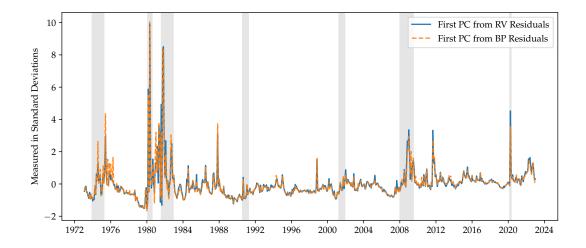
Realized Covariances



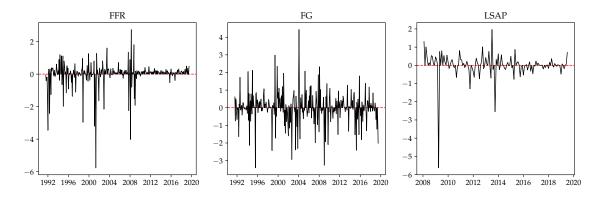
Spectral Decomposition of RV Residuals



Unspanned Factors: RV vs BP

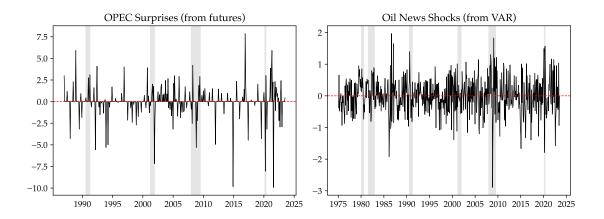


Monetary Policy Shocks from Swanson (2021)



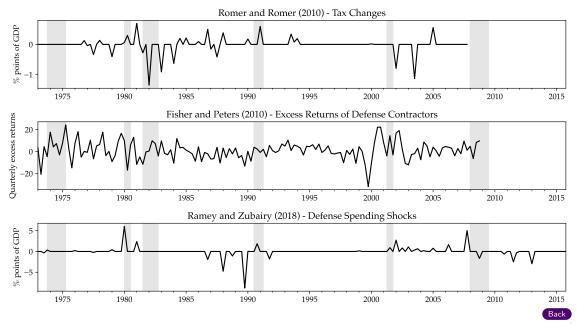
Back

Oil Shocks from Känzig (2021)



Back

Fiscal Shocks



Math and Tables

Estimating Nelson-Siegel Factors with OLS

- We estimate the factors using OLS: regress yields on coefficients;
- $\lambda > 0$ is fixed;
- No need of numerical solutions!

$$\begin{bmatrix} \widehat{\beta}_{1,t} \\ \widehat{\beta}_{2,t} \\ \widehat{\beta}_{3,t} \end{bmatrix} = (M'M)^{-1} M'Y_t, \qquad M \equiv \begin{bmatrix} 1 & \frac{1-e^{-\lambda\tau_1}}{\lambda\tau_1} & \frac{1-e^{\lambda\tau_1}}{\lambda\tau_1} - e^{-\lambda\tau_1} \\ 1 & \frac{1-e^{-\lambda\tau_2}}{\lambda\tau_2} & \frac{1-e^{\lambda\tau_2}}{\lambda\tau_2} - e^{-\lambda\tau_2} \\ \vdots & \vdots & \vdots \\ 1 & \frac{1-e^{-\lambda\tau_J}}{\lambda\tau_J} & \frac{1-e^{\lambda\tau_J}}{\lambda\tau_J} - e^{-\lambda\tau_J} \end{bmatrix}$$

-

Back

.

References I

- Andersen, T. G. & Benzoni, L. (2010). Do bonds span volatility risk in the u.s. treasury market? a specification test for affine term structure models. *The Journal of Finance*, 65(2), 603–653.
- Backwell, A. (2021). Unspanned stochastic volatility from an empirical and practical perspective. Journal of Banking & Finance, 122, 105993.
- Barndorff-Nielsen, O. & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. *Journal of Financial Econometrics*, 2(1), 1–37.
- Barndorff-Nielsen, O. & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics, 4(1), 1–30.
- Bauer, M. & Rudebusch, G. (2017). Resolving the spanning puzzle in macro-finance term structure models. *Review of Finance*, 21(2), 511–553.
- Bikbov, R. & Chernov, M. (2009). Unspanned stochastic volatility in affine models: Evidence from eurodollar futures and options. *Management Science*, 55(8), 1292–1305.
- Collin-Dufresne, P. & Goldstein, R. S. (2002). Do bonds span the fixed income markets? theory and evidence for unspanned stochastic volatility. *The Journal of Finance*, 57(4), 1685–1730.
- Diebold, F. X. & Rudebusch, G. D. (2013). Yield curve modeling and forecasting: the dynamic Nelson-Siegel approach. The Econometric and Tinbergen Institutes lectures. Princeton: Princeton University Press.

References II

- Filipovic, D., Larsson, M., & Trolle, A. (2017). Linear-rational term structure models. *The Journal of Finance*, 72(2), 655–704.
- Fisher, J. D. & Peters, R. (2010). Using stock returns to identify government spending shocks. *The Economic Journal*, 120(544), 414–436.
- Freire, G. & Riva, R. (2023). Asymmetric violations of the spanning hypothesis. SSRN Electronic Journal.
- Känzig, D. R. (2021). The macroeconomic effects of oil supply news: Evidence from opec announcements. American Economic Review, 111(4), 1092–1125.
- Li, H. & Zhao, F. (2006). Unspanned stochastic volatility: Evidence from hedging interest rate derivatives. *The Journal* of *Finance*, 61(1), 341–378.
- Li, H. & Zhao, F. (2009). Nonparametric estimation of state-price densities implicit in interest rate cap prices. *Review* of *Financial Studies*, 22(11), 4335–4376.
- Litterman, R. B. & Scheinkman, J. (1991). Common factors affecting bond returns. *Journal of Fixed Income*, 1(1), 54–61.
- Liu, Y. & Wu, C. (2021). Reconstructing the yield curve. *Journal of Financial Economics*, 142(3), 1395–1425. Nelson, C. & Siegel, A. F. (1987). Parsimonious modeling of yield curves. *Journal of Business*, 60(4), 473–89. Piazzesi, M. (2010). *Affine Term Structure Models*, (pp. 691–766). Elsevier.

References III

- Ramey, V. A. (2011). Identifying government spending shocks: It's all in the timing*. The Quarterly Journal of Economics, 126(1), 1–50.
- Ramey, V. A. & Zubairy, S. (2018). Government spending multipliers in good times and in bad: Evidence from us historical data. *Journal of Political Economy*, 126(2), 850–901.
- Romer, C. D. & Romer, D. H. (2010). The macroeconomic effects of tax changes: Estimates based on a new measure of fiscal shocks. *American Economic Review*, 100(3), 763–801.
- Swanson, E. T. (2021). Measuring the effects of federal reserve forward guidance and asset purchases on financial markets. *Journal of Monetary Economics*, 118, 32–53.