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Intro

• Rational expectations in asset pricing have important implications:

▶ Volatile expected risk premia;

▶ Smooth beliefs about dividend growth;

▶ At odds with survey data on beliefs;

▶ Related to other puzzles;

• Recent agenda: take more seriously subjective expectation data, reconsider puzzles;

• Predictability literature:

▶ Under RE: predictable aggregate returns are due to time-varying risk premia;

▶ Absent RE: mechanisms linking measurable beliefs to overpricing and future returns;

▶ Recent evidence that subjective beliefs about dividends (and earnings) predict market

returns (Bordalo et al., 2019; De La O and Myers, 2021; Bordalo et al., 2023);
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Mechanisms - Not exhaustive

Disagreement:

• With heterogeneity, agents may disagree in equilibrium;

• Many reasons: different priors, different information sets/signals, different abilities to

process info ...;

• Short-selling constraints prevent pessimists from trading and disciplining optimists;

• Prediction: ↑ disagreement =⇒ ↑ prices (and ↓ future returns);

(Miller, 1977; Atmaz and Basak, 2018)

Belief overreaction:

• Agents update their beliefs based on current dividend growth news.

• They overreact and become excessively optimistic after good news.

• Prediction: ↑ beliefs about growth =⇒ ↑ prices (and ↓ future returns);

(La Porta, 1996; Bordalo et al., 2023)
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This Paper

• We study whether disagreement and subjective beliefs can predict index returns;

• We evaluate these different mechanisms both in-sample and out-of-sample;

• We rely on survey data from equity analysts from large financial institutions;

Results are negative:

• Predictability through disagreement has disappeared over time;

• Predictability through earnings expectations is unstable across subsamples;

• Neither forces dominates;

• No extra predictive value added after we control for the price/earnings ratio;
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Data and Definitions

Market data:

• Aggregate returns: value-weighted (total) index returns from CRSP;

• Price/earnings ratio (PE): CAPE measure from Robert Shiller’s website;

Subjective Beliefs: analyst survey from I/B/E/S

• Analysts provide forecasts for “long-term earnings growth” rates (LTG);

• “...the expected annual increase in operating earnings over the company’s next full

business cycle. These forecasts refer to a period of between three to five years”.

• Sample: December, 1981 - December, 2022 (monthly frequency);

• We consider the value-weighted first and second moments of beliefs:

wi ,t ≡
Pi ,t · Qi ,t∑Nt
j=1 Pj ,t · Qj ,t

LTGt ≡
Nt∑
i=1

wi ,t · LTGi ,t Dt ≡
Nt∑
i=1

wi ,t · Di ,t
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Subjective Beliefs and PE Time Series
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Rolling Correlations
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• 10-year rolling windows;

• Correlation changes sign over time;
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An In-Sample Predictability Test

We estimate the following predictive regression:

Rt+h|t = α+ βLTG · LTGt + βD · Dt + βPE · PEt + ϵt+h (1)

• Theory =⇒ βLTG < 0, βD < 0;

• Today: h = 36. In the paper, we also do h = 12 and h = 60;

• Yu (2011) found βD < 0, but his sample stopped in 2007;

• Bordalo et al. (2023) found βLTG < 0, but do not consider Dt ; Sample end: 2015;

• We revisit these samples and then study the 1981-2022 period;
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Revisiting Yu (2011)

Same sample as Yu (2011) (1981-2007)

R36

(1) (2) (3) (4) (5) (6)

LTG -0.65*** -0.33 -0.42 0.47**

(-3.59) (-1.27) (-1.09) (2.13)

D -0.68*** -0.45 -0.51* -0.72**

(-3.30) (-1.38) (-1.88) (-2.22)

PE -0.28 -0.41** -0.72***

(-0.73) (-2.14) (-4.83)

N 253 253 253 253 253 253

R2 0.378 0.416 0.460 0.396 0.538 0.562

• Coefficient on LTG

changes sign;

• Coefficient on D

seems stable;

• Similar results to

h = 12 and h = 36

(see the paper!)
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Revisiting Bordalo et al. (2023)

Same sample as Bordalo et al. (2023) (1981-2015)

R36

(1) (2) (3) (4) (5) (6)

LTG -0.47*** -0.41*** -0.02 -0.01

(-3.19) (-3.47) (-0.09) (-0.04)

D -0.36 -0.28 -0.22 -0.22

(-1.03) (-1.21) (-0.74) (-0.74)

PE -0.59** -0.55*** -0.54*

(-2.10) (-3.00) (-1.70)

N 373 373 373 373 373 373

R2 0.198 0.120 0.265 0.339 0.382 0.380

• Effect of D

disappeared;

• Effect of LTG

disappears if we

control for PE;

• Similar results to

h = 12 and h = 60;
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Full-Sample

Full-Sample (1981-2022)

R36

(1) (2) (3) (4) (5) (6)

LTG -0.37 -0.33 -0.01 -0.01

(-1.56) (-1.49) (-0.03) (-0.03)

D -0.27 -0.20 -0.10 -0.10

(-1.16) (-0.91) (-0.42) (-0.42)

PE -0.55*** -0.52** -0.52***

(-3.85) (-2.29) (-2.87)

N 457 457 457 457 457 457

R2 0.129 0.068 0.163 0.288 0.298 0.296

• Only significant

predictor is PE;

• As soon as we add

PE, all other

coefficients shrink

towards zero;

• No evidence of

predictability through

subjective beliefs;

• Similar results to

h = 12 and h = 60;
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Out-of-sample Forecasting

• Can these variables predict return out-of-sample? What if we use them jointly?

• When are each of these models getting it right/wrong?

• We produce monthly forecasts h months ahead;

• What’s our benchmark? The historical average;

• We evaluate forecasts using the OOS R2 from Campbell and Thompson (2008):

R2
OOS(t0, h) = 1−

T∑
t=t0

(
Rt|t−h − R̂t|t−h

)2

T∑
t=t0

(
Rt|t−h − Rt|t−h

)2 (2)

• What t0 should we use? We pick July, 2007 but we make it vary in the paper;

• It ensures analysts had knowledge of the dot-com bubble burst;
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R2
OOS – A snapshot of performance

Forecast Horizon h (in months) 6 12 36 60

PE 0.04 0.08 0.12 0.36

LTG 0.01 0.04 -0.51 -0.22

D -0.09 -0.32 -1.51 -0.92

PE + LTG 0.03 0.06 -0.17 0.21

PE + D -0.06 -0.19 -0.77 0.08

LTG + D -0.09 -0.28 -1.35 -0.38

PE + LTG + D -0.13 -0.48 -2.18 -1.98

• After we control for PE, no added value from subjective beliefs;

• More complex models suffer: bias vs variance trade-off;
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Absolute Forecast Error
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Coefficients Over Time
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Wrap-Up

Background:

• Mechanisms of overpricing leading to return predictability (theory);

mean growth expectations (LTG) and disagreement (D).

• Channels have been evaluated in isolation, in particular samples.

Our conclusions:

• In sample: evidence of predictability is fragile across samples and specifications.

• Out of sample: poor performance, dominated by standard PE measure.

Thank you!
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