Asymmetric Violations of the Spanning Hypothesis

Gustavo Freire¹ Raul Riva²

¹Erasmus University ²Northwestern University

Fields Institute Bootcamp on Machine Learning on Finance

April 25th, 2024

Intro

- Yield curve dynamics is of major interest:
	- \triangleright Monetary policy transmission $+$ Fiscal policy assessment;
	- ▶ Risk management and long-term investment decisions;
	- ▶ Risk premia measurement and portfolio allocation;
- Arbitrage-free Affine Term Structure models: our workhorse, but generate sharp predictions;

Intro

- Yield curve dynamics is of major interest:
	- \triangleright Monetary policy transmission $+$ Fiscal policy assessment;
	- ▶ Risk management and long-term investment decisions;
	- Risk premia measurement and portfolio allocation;
- Arbitrage-free Affine Term Structure models: our workhorse, but generate sharp predictions;
- Common *implication* of many term structure models: the "Spanning Hypothesis"
	- ▶ The yield curve spans all information necessary to forecast future yields and bond returns;
	- \triangleright The dynamics of underlying macroeconomic risks should be embedded in bond prices (and yields);
	- ▶ Arises from many full-information models [\(Wachter \(2006\)](#page-40-0), [Dewachter and Lyrio \(2006\)](#page-39-0), [Piazzesi](#page-40-1) [and Schneider \(2007\)](#page-40-1), [Rudebusch and Wu \(2008\)](#page-40-2), [Rudebusch and Swanson \(2012\)](#page-40-3), [Duffee](#page-39-1) $(2013), \ldots);$ $(2013), \ldots);$

This paper

Do macroeconomic variables help forecasting excess bond returns and/or future yields after we condition on the current yield curve?

- Literature often offers a binary answer:
	- ▶ Yes: [Cooper and Priestley \(2009\)](#page-39-2), [Ludvigson and Ng \(2009\)](#page-40-4), [Joslin et al. \(2014\)](#page-39-3), [Greenwood and](#page-39-4) [Vayanos \(2014\)](#page-39-4), [Cieslak and Povala \(2015\)](#page-39-5), Fernandes and Vieira (2019);
	- ▶ Probably Not: [Duffee \(2013\)](#page-39-1), [Bauer and Hamilton \(2018\)](#page-39-6);
	- \triangleright Inference is challenging and often in-sample: small sample $+$ persistent regressors;

This paper

Do macroeconomic variables help forecasting excess bond returns and/or future yields after we condition on the current yield curve?

- Literature often offers a binary answer:
	- ▶ Yes: [Cooper and Priestley \(2009\)](#page-39-2), [Ludvigson and Ng \(2009\)](#page-40-4), [Joslin et al. \(2014\)](#page-39-3), [Greenwood and](#page-39-4) [Vayanos \(2014\)](#page-39-4), [Cieslak and Povala \(2015\)](#page-39-5), Fernandes and Vieira (2019);
	- ▶ Probably Not: [Duffee \(2013\)](#page-39-1), [Bauer and Hamilton \(2018\)](#page-39-6);
	- \triangleright Inference is challenging and often in-sample: small sample $+$ persistent regressors;
- We show evidence that the answer is more nuanced: *asymmetric* violations;
- Stronger violations at the shorter end of the yield curve; No evidence at the longer end;
- Focus on out-of-sample prediction: closer to what a practitioner would do;
- Why should we care? Violations are economically meaningful for a mean-variance investor;
- Stronger violations when inflation is higher;

How do we do it?

- **1** Decompose the US zero-coupon yield curve in 3 factors related to yield maturities
	- ▶ Nelson-Siegel representation: $y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1-e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1-e^{-\lambda \tau}}{\lambda \tau} e^{-\lambda \tau} \right);$
	- ▶ Our estimation technique implies that β 's are special linear combinations of zero-coupon yields;
	- \triangleright We provide an explicit map between innovations in factors and realized excess bond returns;
	- ▶ Spanning Hypothesis \implies macro data should not improve forecasting out-of-sample ;

How do we do it?

- **1** Decompose the US zero-coupon yield curve in 3 factors related to yield maturities
	- ▶ Nelson-Siegel representation: $y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1-e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1-e^{-\lambda \tau}}{\lambda \tau} e^{-\lambda \tau} \right);$
	- ▶ Our estimation technique implies that β 's are special linear combinations of zero-coupon yields;
	- \triangleright We provide an explicit map between innovations in factors and realized excess bond returns;
	- **►** Spanning Hypothesis \implies macro data **should not** improve forecasting out-of-sample ;
- **2** Use several different ML methods to predict bond risk premia and β 's
	- ▶ We create forecasts using current β 's + macro variables;
	- ▶ Macro data: FRED-MD \implies monthly frequency, high-dimensional dataset, several macro signals;
	- \triangleright We benchmark our forecasts against a random walk: hard to beat, and available under the SH;
	- ▶ Full sample: 1973-2021; Out-of-sample: 1990-2021; Focus on 1-year ahead forecasts;
	- Main lesson: all predictability of bond returns with macro data comes from β_2 .

How do we do it?

- **1** Decompose the US zero-coupon yield curve in 3 factors related to yield maturities
	- ▶ Nelson-Siegel representation: $y_t^{(\tau)} = \beta_{1,t} + \beta_{2,t} \left(\frac{1-e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{3,t} \left(\frac{1-e^{-\lambda \tau}}{\lambda \tau} e^{-\lambda \tau} \right);$
	- ▶ Our estimation technique implies that β 's are special linear combinations of zero-coupon yields;
	- \triangleright We provide an explicit map between innovations in factors and realized excess bond returns;
	- **►** Spanning Hypothesis \implies macro data **should not** improve forecasting out-of-sample ;
- **2** Use several different ML methods to predict bond risk premia and β 's
	- ▶ We create forecasts using current β 's + macro variables;
	- ▶ Macro data: FRED-MD \implies monthly frequency, high-dimensional dataset, several macro signals;
	- \triangleright We benchmark our forecasts against a random walk: hard to beat, and available under the SH;
	- ▶ Full sample: 1973-2021; Out-of-sample: 1990-2021; Focus on 1-year ahead forecasts;
	- \blacktriangleright Main lesson: all predictability of bond returns with macro data comes from β_2 .
- 3 Mean-variance trading strategy: a more complex model helps trading shorter maturities
	- ▶ Sharpe ratios improve when we trade based on macro signals, but asymmetrically

Factor Realizations (1973-2021)

Decomposing Excess Bond Returns

The 1-year excess bond returns for a maturity of n years are given by:

$$
xr_{t+12}(n) \equiv n \cdot y_t^{(n)} - (n-1) \cdot y_{t+12}^{(n-1)} - y_t^{(1)}
$$
 (1)

Proposition 1

Suppose the yield curve follows the Nelson-Siegel representation and assume that the decay parameter is a positive constant $\lambda_t = \lambda > 0$. Define $\theta \equiv 12\lambda$. The following holds:

$$
xr_{t+12}(n) = (n-1)\left[\beta_{1,t} - \beta_{1,t+12}\right] + \left(\frac{1 - e^{-\theta(n-1)}}{\theta}\right)\left[e^{-\theta}\beta_{2,t} - \beta_{2,t+12}\right] + \left(\frac{1 - e^{-\theta(n-1)}}{\theta} - ne^{-\theta(n-1)} + 1\right)\left[e^{-\theta}\beta_{3,t} - \beta_{3,t+12}\right] + \left(1 - e^{-\theta(n-1)}\right)\beta_{3,t+12}
$$
\n(2)

MSE Ratios With and Without Macro Data ([Controlling by 3 YC PCs](#page-19-0)) (P p[-values](#page-20-0)) (P [In-sample](#page-21-0)

Regularized Linear Models

We use a supervised technique to forecast β 's and compare predictions with a random walk:

$$
R_{oos}^2 = 1 - \left[\sum_{t=t_0}^T \left(\beta_{i,t} - \widehat{\beta}_{i,t} \right)^2 / \sum_{t=t_0}^T \left(\beta_{i,t} - \overline{\beta}_{i,t} \right)^2 \right]
$$
(4)

Random Forrest

- Why to constrain ourselves to linear methods? We deploy a standard RF methodology;
- [Medeiros et al. \(2021\)](#page-40-5), [Goulet-Coulombe \(2023\)](#page-39-7) show how RF is well suited for macro data;
- We grow 500 trees at each step and forecast one year ahead;

Average Feature Importance (Macro Variables vs Yield Curve)

Baseline Sharpe Ratio ≈ 0.2 (Constrained Case) \cdot [Unconstrained Case](#page-33-0)

Wrap-Up

Main takeaways:

- The shorter end of the American nominal yield curve violates the Spanning Hypothesis;
- The longer end behaves very much as many affine DTSMs predict!
- This extra predictability can create a Sharpe ratio improvement of $\approx 0.1 0.2$;
- (Not shown today) A more complicated model pays off when one faces higher inflation rates;

Wrap-Up

Main takeaways:

- The shorter end of the American nominal yield curve violates the Spanning Hypothesis;
- The longer end behaves very much as many affine DTSMs predict!
- This extra predictability can create a Sharpe ratio improvement of $\approx 0.1 0.2$;
- (Not shown today) A more complicated model pays off when one faces higher inflation rates;

And now so what?

- Shorter and longer rates should probably be modeled within different frameworks;
- Why do we think this asymmetry is happening? Our conjecture:
	- ▶ Shorter end is more heavily influenced by monetary policy... and fund managers know that!
	- ▶ Macro data may help market participants to anticipate monetary policy decisions;
- Models with spanning assume that the central bank's reaction function is known!
	- ▶ How would a DSTM with an unknown reaction function look like? Future work!

Wrap-Up

Main takeaways:

- The shorter end of the American nominal yield curve violates the Spanning Hypothesis;
- The longer end behaves very much as many affine DTSMs predict!
- This extra predictability can create a Sharpe ratio improvement of $\approx 0.1 0.2$;
- (Not shown today) A more complicated model pays off when one faces higher inflation rates;

And now so what?

- Shorter and longer rates should probably be modeled within different frameworks;
- Why do we think this asymmetry is happening? Our conjecture:
	- ▶ Shorter end is more heavily influenced by monetary policy... and fund managers know that!
	- ▶ Macro data may help market participants to anticipate monetary policy decisions;
- Models with spanning assume that the central bank's reaction function is known!
	- ▶ How would a DSTM with an unknown reaction function look like? Future work!

Thank you!

[Appendix](#page-18-0) [\(Thank you!\)](#page-18-0)

Excess Bond Returns Relative MSE Ratios

In-Sample Evidence Forecasting Returns **[Back](#page-10-0)**

\triangle lternative Estimation Procedures

- NLS stands for Non-Linear Least Squares Date by Date
- Optimal OLS is the in-sample best OLS-implied decay fit

Alternative Estimation Procedures

A quadratic polynomial model:

$$
y_t^{(\tau)} = c_{1,t} + c_{2,t} \cdot \tau + c_{3,t} \cdot \tau^2
$$
\n(5)

Is this a reasonable model for the US Nominal Yield Curve?

- Blue: $rx_t(n)$ observed from data for $n = 2$ and $n = 10$
- Red: $rx_t(n)$ that would have been implied by our estimates of the factors
- A Nelson-Siegel model fits well the American nominal yield curve
- The Fed actually uses a variant of the NS model to report [their yield curve](https://www.federalreserve.gov/data/nominal-yield-curve.htm)

$Estimation$ Details \bullet

Define the following matrices for each time t:

$$
X \equiv \begin{bmatrix} 1 & \left(\frac{1-e^{-\lambda\tau_1}}{\lambda\tau_1}\right) & \left(\frac{1-e^{-\lambda\tau_1}}{\lambda\tau_1} - e^{-\lambda\tau_1}\right) \\ \vdots & \vdots & \vdots \\ 1 & \left(\frac{1-e^{-\lambda\tau_N}}{\lambda\tau_N}\right) & \left(\frac{1-e^{-\lambda\tau_N}}{\lambda\tau_N} - e^{-\lambda\tau_N}\right) \end{bmatrix}, \quad Y_t = \begin{bmatrix} y_t^{(\tau_1)} \\ \vdots \\ y_t^{(\tau_N)} \end{bmatrix}
$$

Now estimate betas using OLS:

$$
\begin{bmatrix} \beta_{1,t} \\ \beta_{2,t} \\ \beta_{3,t} \end{bmatrix} = (X'X)^{-1}X'Y_t \tag{7}
$$

Notice that X does not depend on t .

(6)

 $Fitting the Decay$

• For each λ , fit the model by OLS over the entire sample and compute the average squared fitting error

Regularization Failure for β_1

[Back](#page-11-0)

Model Selection - Lasso

How frequently are variables from each group chosen?

- Typical number of chosen variables is around 10-15
- Price measures are the leading predictor for β_1 echoes Joslin et al (2014)
- Short and medium run: the "illusion of sparsity" Giannone et al (2021)

 $Model$ Selection - Flastic Net \bullet

Feature Importance

Unconstrained Sharpe Ratio Improvement

Time series of scaled $D_{i,t}$

[Back](#page-0-0)

Random Forrest with Rolling Window (180 months)

Math Details - Giacomini and White (2006)

- Let x_t be a $q \times 1$ random vector with variables chosen by the econometrician
- \bullet Let $\mathsf{z}_{t+h} \equiv \mathsf{x}_t\left(L_{t+h}^{m'} L_{t+h}^{m} \right)$ for a given forecasting horizon h • Define

$$
\bar{z}_{T} \equiv \frac{1}{T - h - t_{0}} \sum_{t = t_{0}}^{T - h} z_{t+h}
$$
\n
$$
\widehat{\Omega}_{T} \equiv \frac{1}{T - h - t_{0}} \sum_{t = t_{0}}^{T - h} z_{t+h} z_{t+h}' + \frac{1}{T - h - t_{0}} \sum_{j=1}^{h-1} w_{j,T} \sum_{t = t_{0} + j}^{T - h} (z_{t+h-j} z_{t+h}' + z_{t+h} z_{t+h-j}')
$$
\n
$$
w_{j,T} \to 1, \quad \text{as } T \to \infty \text{ for each } j \in \{1, ..., h-1\}
$$

• Under some regularity conditions, they show that as T diverges to ∞ :

$$
W \equiv \mathcal{T} \cdot z_{t+h}' \widehat{\Omega}_T^{-1} z_{t+h} \xrightarrow{d} \chi_q^2 \tag{8}
$$

19 / 23

Conditioning Variables - Time Series

[Back](#page-0-0)

Non-Parametric Evidence on Conditional Predictive Ability

 \triangleright [Back](#page-0-0)

References I

- Bauer, M. D. and Hamilton, J. D. (2018). Robust bond risk premia. Review of Financial Studies, 31(2):399–448.
- Cieslak, A. and Povala, P. (2015). Expected returns in treasury bonds. Review of Financial Studies, 28(10):2859–2901.
- Cooper, I. and Priestley, R. (2009). Time-varying risk premiums and the output gap. Review of Financial Studies, 22(7):2601–2633.
- Dewachter, H. and Lyrio, M. (2006). Macro factors and the term structure of interest rates. Journal of Money, Credit and Banking, 38(1):119–140.
- Duffee, G. (2013). Forecasting interest rates. In Handbook of Economic Forecasting, pages 385–426. Elsevier.
- Goulet-Coulombe, P. (2023). The macroeconomy as a random forest. Journal of Applied Econometrics, forthcoming.
- Greenwood, R. and Vayanos, D. (2014). Bond supply and excess bond returns. Review of Financial Studies, 27(3):663–713.
- Joslin, S., Priebsch, M., and Singleton, K. (2014). Risk premiums in dynamic term structure models with unspanned macro risks. Journal of Finance, 69(3):1197–1233.

References II

- Ludvigson, S. and Ng, S. (2009). Macro factors in bond risk premia. Review of Financial Studies, 22(12):5027–5067.
- Medeiros, M. C., Vasconcelos, G. F. R., Álvaro Veiga, and Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1):98–119.
- Piazzesi, M. and Schneider, M. (2007). Equilibrium Yield Curves. In NBER Macroeconomics Annual 2006, Volume 21, NBER Chapters, pages 389–472. National Bureau of Economic Research, Inc.
- Rudebusch, G. D. and Swanson, E. T. (2012). The bond premium in a dsge model with long-run real and nominal risks. American Economic Journal: Macroeconomics, 4(1):105–143.
- Rudebusch, G. D. and Wu, T. (2008). A macro-finance model of the term structure, monetary policy and the economy. The Economic Journal, 118(530):906–926.
- Wachter, J. (2006). A consumption-based model of the term structure of interest rates. Journal of Financial Economics, 79(2):365–399.