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Intro

• Yield curve dynamics is of major interest:
▶ Monetary policy transmission + Fiscal policy assessment;
▶ Risk management and long-term investment decisions;
▶ Risk premia measurement and portfolio allocation;

• Arbitrage-free Affine Term Structure models: our workhorse, but generate sharp predictions;

• Common implication of many term structure models: the “Spanning Hypothesis”
▶ The yield curve spans all information necessary to forecast future yields and bond returns;
▶ The dynamics of underlying macroeconomic risks should be embedded in bond prices (and yields);
▶ Arises from many full-information models (Wachter (2006), Dewachter and Lyrio (2006), Piazzesi

and Schneider (2007), Rudebusch and Wu (2008), Rudebusch and Swanson (2012), Duffee

(2013), ...);
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This paper

Do macroeconomic variables help forecasting excess bond returns and/or future yields

after we condition on the current yield curve?

• Literature often offers a binary answer:
▶ Yes: Cooper and Priestley (2009), Ludvigson and Ng (2009), Joslin et al. (2014), Greenwood and

Vayanos (2014), Cieslak and Povala (2015), Fernandes and Vieira (2019);
▶ Probably Not: Duffee (2013), Bauer and Hamilton (2018);
▶ Inference is challenging and often in-sample: small sample + persistent regressors;

• We show evidence that the answer is more nuanced: asymmetric violations;

• Stronger violations at the shorter end of the yield curve; No evidence at the longer end;

• Focus on out-of-sample prediction: closer to what a practitioner would do;

• Why should we care? Violations are economically meaningful for a mean-variance investor;

• Stronger violations when inflation is higher;
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How do we do it?

1 Decompose the US zero-coupon yield curve in 3 factors related to yield maturities
▶ Nelson-Siegel representation: y

(τ)
t = β1,t + β2,t

(
1−e−λτ

λτ

)
+ β3,t

(
1−e−λτ

λτ − e−λτ
)
;

▶ Our estimation technique implies that β’s are special linear combinations of zero-coupon yields;
▶ We provide an explicit map between innovations in factors and realized excess bond returns;
▶ Spanning Hypothesis =⇒ macro data should not improve forecasting out-of-sample ;

2 Use several different ML methods to predict bond risk premia and β’s
▶ We create forecasts using current β’s + macro variables;
▶ Macro data: FRED-MD =⇒ monthly frequency, high-dimensional dataset, several macro signals;
▶ We benchmark our forecasts against a random walk: hard to beat, and available under the SH;
▶ Full sample: 1973-2021; Out-of-sample: 1990-2021; Focus on 1-year ahead forecasts;
▶ Main lesson: all predictability of bond returns with macro data comes from β2.

3 Mean-variance trading strategy: a more complex model helps trading shorter maturities
▶ Sharpe ratios improve when we trade based on macro signals, but asymmetrically
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Factor Realizations (1973-2021)
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Decomposing Excess Bond Returns

The 1-year excess bond returns for a maturity of n years are given by:

xrt+12(n) ≡ n · y (n)t − (n − 1) · y (n−1)
t+12 − y

(1)
t (1)

Proposition 1

Suppose the yield curve follows the Nelson-Siegel representation and assume that the decay parameter is

a positive constant λt = λ > 0. Define θ ≡ 12λ. The following holds:

xrt+12(n) = (n − 1)
[
β1,t − β1,t+12

]
+

(
1 − e−θ(n−1)

θ

)[
e−θβ2,t − β2,t+12

]
(2)

+

(
1 − e−θ(n−1)

θ
− ne−θ(n−1) + 1

)[
e−θβ3,t − β3,t+12

]
+

(
1 − e−θ(n−1)

)
β3,t+12
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MSE Ratios With and Without Macro Data Controlling by 3 YC PCs p-values In-sample

xrt+12(n) = αn + θ′nCt + γ′nPCt + ϵt+12,n (3)
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Regularized Linear Models
We use a supervised technique to forecast β’s and compare predictions with a random walk:

R2
oos = 1 −

[
T∑

t=t0

(
βi ,t − β̂i ,t

)2
/

T∑
t=t0

(
βi ,t − βi ,t

)2
]

(4)

Target No Macro Data All Macro Data p-value

Ridge Lasso Elastic Net Ridge Lasso Elastic Net Ridge Lasso Elastic Net

β1 -4.84 -4.82 -4.69 -4.06 -4.30 -4.18 0.00 0.00 0.00

β2 -0.08 -0.13 -0.19 0.07 0.07 0.06 0.05 0.00 0.01

β3 -0.41 -0.59 -0.59 -0.47 -0.46 -0.45 0.78 0.04 0.03

∆β1 0.12 0.12 0.09 0.01 0.12 0.12 0.96 0.50 0.27

∆β2 0.01 -0.02 -0.01 0.15 0.22 0.19 0.02 0.00 0.00

∆β3 0.04 -0.02 -0.03 -0.13 -0.09 -0.08 1.00 0.95 0.95

Other Controls Stationarity Matters Chosen variables
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Random Forrest
• Why to constrain ourselves to linear methods? We deploy a standard RF methodology;

• Medeiros et al. (2021), Goulet-Coulombe (2023) show how RF is well suited for macro data;

• We grow 500 trees at each step and forecast one year ahead;

Control: Lagged Factors Control: Forward Rates

Target No Macro All Macro p-value No Macro All Macro p-value

β1 -1.48 -1.93 0.87 -0.76 -0.72 0.39

β2 -0.08 0.27 0.01 -0.34 0.23 0.00

β3 -0.41 -0.16 0.02 -0.58 -0.22 0.01

∆β1 -0.17 0.00 0.05 -0.53 -0.04 0.00

∆β2 -0.08 0.32 0.00 -0.42 0.32 0.00

∆β3 -0.37 -0.01 0.02 -0.33 -0.25 0.25
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Average Feature Importance (Macro Variables vs Yield Curve)
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Baseline Sharpe Ratio ≈ 0.2 (Constrained Case) Unconstrained Case
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Wrap-Up
Main takeaways:

• The shorter end of the American nominal yield curve violates the Spanning Hypothesis;

• The longer end behaves very much as many affine DTSMs predict!

• This extra predictability can create a Sharpe ratio improvement of ≈ 0.1 − 0.2;

• (Not shown today) A more complicated model pays off when one faces higher inflation rates;

And now so what?

• Shorter and longer rates should probably be modeled within different frameworks;
• Why do we think this asymmetry is happening? Our conjecture:
▶ Shorter end is more heavily influenced by monetary policy... and fund managers know that!
▶ Macro data may help market participants to anticipate monetary policy decisions;

• Models with spanning assume that the central bank’s reaction function is known!
▶ How would a DSTM with an unknown reaction function look like? Future work!

Thank you!
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Appendix

(Thank you!)
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Excess Bond Returns Relative MSE Ratios Back
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p-Values for MSE Ratios of Excess Bond Returns Back

Maturity in months

24 60 84 120 240 360

1 PC 0.00 0.01 0.02 0.05 0.74 0.92

2 PC 0.00 0.01 0.01 0.04 0.16 0.32

3 PC 0.02 0.01 0.04 0.13 0.81 0.96

4 PC 0.04 0.06 0.13 0.24 0.55 0.65

5 PC 0.18 0.28 0.42 0.48 0.80 0.84

6 PC 0.21 0.25 0.35 0.38 0.69 0.66

7 PC 0.16 0.09 0.13 0.16 0.34 0.28

8 PC 0.24 0.23 0.32 0.37 0.59 0.57

9 PC 0.12 0.11 0.19 0.33 0.75 0.80

10 PC 0.15 0.12 0.19 0.28 0.79 0.51
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In-Sample Evidence Forecasting Returns Back

2-year 10-year 20-year 30-year

PC 1 0.09*** 0.12*** 0.13*** 0.04** 0.07*** 0.07*** -0.01 -0.00 0.00 -0.03 -0.02 -0.03

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.04)

PC 2 -0.07** -0.07** -0.07*** -0.06** -0.01 0.00 0.00 0.02

(0.03) (0.03) (0.02) (0.02) (0.04) (0.05) (0.05) (0.06)

PC 3 0.11*** 0.11*** 0.08*** 0.08*** 0.05** 0.05* 0.04 0.03

(0.03) (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

PC 4 -0.02 -0.02 -0.05*** -0.06*** -0.06*** -0.06*** -0.09*** -0.08***

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

PC 5 -0.04 -0.04 -0.09*** -0.08*** -0.08** -0.08* -0.09** -0.09*

(0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.05) (0.05)

PC 6 0.03 0.07*** 0.04 0.06

(0.03) (0.03) (0.04) (0.05)

PC 7 0.06* 0.04 0.01 0.01

(0.03) (0.03) (0.03) (0.03)

PC 8 -0.08*** -0.08*** -0.04 -0.04

(0.03) (0.03) (0.04) (0.05)

N 588 588 588 588 588 588 422 422 422 422 422 422

R2 Adj. 0.28 0.36 0.40 0.28 0.36 0.40 0.16 0.23 0.24 0.15 0.22 0.23

R2 Adj. (No Macro Data) 0.15 0.15 0.15 0.25 0.25 0.25 0.16 0.16 0.16 0.14 0.14 0.14
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Alternative Estimation Procedures Back
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• NLS stands for Non-Linear Least Squares Date by Date

• Optimal OLS is the in-sample best OLS-implied decay fit
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Alternative Estimation Procedures Back

A quadratic polynomial model:

y
(τ)
t = c1,t + c2,t · τ + c3,t · τ2 (5)
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Is this a reasonable model for the US Nominal Yield Curve? Back
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• Blue: rxt(n) observed from data for n = 2 and n = 10
• Red: rxt(n) that would have been implied by our estimates of the factors
• A Nelson-Siegel model fits well the American nominal yield curve
• The Fed actually uses a variant of the NS model to report their yield curve
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Estimation Details Back

Define the following matrices for each time t:

X ≡


1

(
1−e−λτ1

λτ1

) (
1−e−λτ1

λτ1
− e−λτ1

)
...

...
...

1
(

1−e−λτN

λτN

) (
1−e−λτN

λτN
− e−λτN

)
 , Yt =


y
(τ1)
t
...

y
(τN)
t

 (6)

Now estimate betas using OLS: 
β1,t

β2,t

β3,t

 =
(
X ′X

)−1
X ′Yt (7)

Notice that X does not depend on t.
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Fitting the Decay Back
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• For each λ, fit the model by OLS over the entire sample and compute the average squared

fitting error
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Out-of-sample PCA-based Forecast of Innovations Back

Predicting Innovations - Controlling for Forward Rates

Number of Macro PCs p-values

Target No Macro 1 2 3 4 5 8 1 2 3 4 5 8

∆β1 -0.19 -0.15 -0.17 -0.14 -0.10 -0.08 0.05 0.19 0.32 0.17 0.12 0.10 0.01

∆β2 -0.11 -0.12 0.14 0.18 0.17 0.19 0.18 0.52 0.00 0.02 0.02 0.02 0.05

∆β3 -0.10 -0.12 -0.06 -0.05 -0.05 -0.06 -0.08 0.93 0.17 0.25 0.26 0.31 0.41

Predicting Factor Levels - Controlling for Lagged Betas

β1 -0.10 -0.10 -0.11 -0.14 -0.11 -0.07 0.06 0.51 0.67 0.83 0.56 0.36 0.04

β2 0.06 0.07 0.21 0.20 0.20 0.20 0.17 0.31 0.01 0.15 0.16 0.18 0.28

β3 -0.11 -0.14 -0.06 -0.05 -0.05 -0.06 -0.08 0.89 0.16 0.19 0.20 0.23 0.39
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Regularization Methods - Controlling by Lagged Betas Back

Target No Macro Data All Macro Data p-value

Ridge Lasso Elastic Net Ridge Lasso Elastic Net Ridge Lasso Elastic Net

Beta 1 -4.91 -4.73 -4.81 -3.76 -5.08 -4.53 0.00 0.97 0.10

Beta 2 0.00 -0.12 -0.12 0.08 0.07 0.02 0.16 0.00 0.08

Beta 3 -0.41 -0.47 -0.49 -0.45 -0.35 -0.39 0.71 0.04 0.09

Innovation 1 0.12 -0.00 0.11 -0.29 0.04 0.08 1.00 0.30 0.84

Innovation 2 0.10 0.08 0.12 0.18 0.25 0.24 0.11 0.00 0.01

Innovation 3 0.08 0.04 0.02 0.00 0.03 0.07 0.95 0.70 0.02
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Regularization Failure for β1 Back
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Model Selection - Lasso
How frequently are variables from each group chosen?
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• Typical number of chosen variables is around 10-15
• Price measures are the leading predictor for β1 - echoes Joslin et al (2014)
• Short and medium run: the “illusion of sparsity” - Giannone et al (2021)

Elastic Net Back
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Model Selection - Elastic Net Back
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Feature Importance
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Unconstrained Sharpe Ratio Improvement Back
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Time series of scaled Di ,t
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Random Forrest with Rolling Window (180 months)

Lagged Factors Forward Rates

Target No Macro All Macro p-value No Macro All Macro p-value

β1 -1.20 -1.32 0.72 -0.63 -0.98 0.98

β2 -0.07 0.20 0.02 -0.30 0.19 0.00

β3 -0.47 -0.24 0.04 -0.67 -0.23 0.00

Back
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Math Details - Giacomini and White (2006) Back

• Let xt be a q × 1 random vector with variables chosen by the econometrician
• Let zt+h ≡ xt

(
Lm

′
t+h − Lmt+h

)
for a given forecasting horizon h

• Define

zT ≡ 1
T − h − t0

T−h∑
t=t0

zt+h

Ω̂T ≡ 1
T − h − t0

T−h∑
t=t0

zt+hz′t+h +
1

T − h − t0

h−1∑
j=1

wj ,T

T−h∑
t=t0+j

(
zt+h−jz′t+h + zt+hz′t+h−j

)
wj ,T → 1, as T → ∞ for each j ∈ {1, ..., h − 1}

• Under some regularity conditions, they show that as T diverges to ∞:

W ≡ T · z′t+hΩ̂
−1
T zt+h

d−→ χ2
q (8)
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Conditioning Variables - Time Series
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Non-Parametric Evidence on Conditional Predictive Ability

Inflation Tercile PCE D1 D2 D3 Control

Low 0.013 -0.152 0.496 2.386 Forward Rates

Medium 0.018 -0.754 0.788 1.923 Forward Rates

High 0.028 0.039 2.430 1.526 Forward Rates

Low 0.013 -0.204 -0.023 0.803 Lagged Factors

Medium 0.018 -0.114 0.120 0.850 Lagged Factors

High 0.028 0.048 1.963 1.492 Lagged Factors

Back
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